Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent Rotating Rayleigh-Bénard convection

  • Richard J. A. M. Stevens
  • Jin-Qiang Zhong
  • Herman J. H. Clercx
  • Roberto Verzicco
  • Detlef Lohse
  • Guenter Ahlers
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 132)

Abstract

For given aspect ratio and given geometry, the nature of Rayleigh Benard convection (RBC) is determined by the Rayleigh number \(Ra = \beta g \Delta L^3 / (\kappa \nu)\) and by the Prandtl number \(Pr = \nu / \kappa\) is the thermal expansion coefficient, g the gravitational acceleration \(\Delta = T_b - T_t\) the difference between the imposed temperatures Tb and Tt at the bottom and the top of the sample, respectively, and v and k the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate Ω (given in rad/s) is used in the form of the Rossby number \(R_o = \sqrt{\beta g \Delta / L / (2 \Omega)}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Brown, D. Funfschilling, A. Nikolaenko, and G. Ahlers, Phys. Fluids 17, 075108 (2005).CrossRefADSGoogle Scholar
  2. 2.
    J.-Q. Zhong et al., Phys. Rev. Lett. 102, 044505 (2009).ADSGoogle Scholar
  3. 3.
    R. Verzicco and P. Orlandi, J. Comput. Phys. 123, 402 (1996).MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    P. Oresta, G. Stingano, and R. Verzicco, Eur. J. Mech. 26, 1 (2007).MATHCrossRefGoogle Scholar
  5. 5.
    R. P. J. Kunnen et al., Europhys. Lett. 84, 24001 (2008).CrossRefADSGoogle Scholar
  6. R. J. A. M. Stevens, R. Verzicco, and D. Lohse, Radial boundary layer structure and Nusselt number in Rayleigh-Bénard convection, 2009.Google Scholar
  7. R. J. A. M. Stevens et al., (2009), submitted to Phys. Rev. Lett. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Richard J. A. M. Stevens
    • 1
  • Jin-Qiang Zhong
    • 2
  • Herman J. H. Clercx
    • 3
  • Roberto Verzicco
    • 4
  • Detlef Lohse
    • 1
  • Guenter Ahlers
    • 2
  1. 1.Dept. of Applied PhysicsUniversity of TwenteEnschedeThe Netherlands
  2. 2.Dept. of Physics and iQCDUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Dept. of PhysicsEindhoven University; Dept. of Mathematics, Twente UniversityEnschedeThe Netherlands
  4. 4.Dept. of Mech. Eng., Universita’ di Roma “Tor Vergata”RomaItaly

Personalised recommendations