Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures

  • Sean Williams
  • Kyle Lund
  • Chenxiang Lin
  • Peter Wonka
  • Stuart Lindsay
  • Hao Yan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5347)

Abstract

We present the development of a new graphical user interface driven molecular modeling, editing and visualization tool called Tiamat. Tiamat addresses the challenge of how to efficiently model large and complex DNA nanostructures. We describe the three major components of our system. First, we discuss design guidelines and data structures that form the basis of flexible and large-scale editing. Second, we explain a semi-automatic sequence generator that combines user input with random sequence generation to efficiently label the molecules in the DNA structure. Third, we outline the visualization techniques including a simplification algorithm that are used to render large designs. The results demonstrate how Tiamat was used to generate large and complex designs.

Keywords

Structural DNA nanotechnology DNA tile 3D DNA structure display DNA sequence design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seeman, N.C.: Nucleic Acid Junctions and Lattices. J. Theo. Biol. 99, 237–247 (1982)CrossRefGoogle Scholar
  2. 2.
    (a) Kallenbach, N.R., Ma, R.-I., Seeman, N.C.: An Immobile Nucleic Acid Junction Constructed from Oligonucleotides. Nature 305, 829–831 (1983) (b) Chen, J., Seeman, N.C.: The Synthesis from DNA of a Molecule with the Connectivity of a Cube. Nature 350, 631–633 (1991) (c) Zhang, Y., Seeman, N.C.: The Construction of a DNA Truncated Octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994) (d) Fu, T.-J., Seeman, N.C.: DNA Double Crossover Structures. Biochemistry 32, 3211–3220 (1993) (e) Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004) (f) Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turberfield, A.J.: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005) (g) Erben, C.M., Goodman, R.P., Turberfield, A.J.: A Self-Assembled DNA Bipyramid. J. Am. Chem. Soc. 129, 6992–6993 (2007)Google Scholar
  3. 3.
    (a) Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and Self-Assembly of Two-Dimensional DNA Crystals. Nature 394, 539–544 (1998) (b) LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The Construction of DNA Triple Crossover Molecules. J. Am. Chem. Soc. 122, 1848–1860 (2000) (c) Shen, Z., Yan, H., Wang, T., Seeman, N.C.: Paranemic Crossover DNA: A Generalized Holliday Structure with Applications in Nanotechnology. J. Am. Chem. Soc. 126, 1666–1674 (2004) (d) Mao, C., Sun, W., Seeman, N.C.: Designed Two-Dimensional DNA: Holliday Junction Arrays Visualized by Atomic Force Microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999) (e) Yan, H., Park, S.H., Ginkelstein, G., Reif, J.H., LaBean, T.H.: DNA templated Self-assembly of Protein Arrays and Highly Conductive Nanowires. Science 301, 1882–1884 (2003) (f) Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of Rigid DNA Triangles with Flexible Four-Arm DNA Junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004) (g) He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-Assembly of Hexagonal DNA Two-Dimensional (2D) Arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005); (h) He, Y., Tian, Y., Ribbe, A.E., Mao, C.: Highly Connected Two-Dimensional Crystals of DNA Six-Point-Stars. J. Am. Chem. Soc. 128, 15978–15979 (2006); (i) Reishus, D., Shaw, B., Brun, Y., Chelyapov, N., Adleman, L.: Self-Assembly of DNA Double-Double Crossover Complexes into High-Density, Doubly Connected, Planar Structures. J. Am. Chem. Soc 127, 17590–17591 (2005) (j) Ke, Y., Liu, Y., Zhang, J., Yan, H.: A Study of DNA Tube Formation Mechanisms Using 4-, 8-, and 12-Helix DNA Nanostructures. J. Am. Chem. Soc. 128, 4414–4421 (2006)CrossRefGoogle Scholar
  4. 4.
    Seeman, N.C.: The Interactive Manipulation and Design of Macromolecular Architecture Utilizing Nucleic Acid Junctions. J. Mol. Graphics 3, 34–39 (1985)CrossRefGoogle Scholar
  5. 5.
    Seeman, N.C.: Physical Models for Exploring DNA Topology. J. Biomol. Struct. Dynam. 5, 997–1004 (1988)CrossRefGoogle Scholar
  6. 6.
    Birac, J.J., Sherman, W.B., Kopatsch, J., Constantinou, P.E., Seeman, N.C.: GIDEON, A Program for Design in Structural DNA Nanotechnology. J. Mol. Graphics Model 25, 470–480 (2006)CrossRefGoogle Scholar
  7. 7.
    Seeman, N.C.: De Novo Design of Sequences for Nucleic Acid Structure Engineering. J. Biomol. Struct. Dynam. 8, 573–581 (1990)CrossRefGoogle Scholar
  8. 8.
    Cormen, et al.: Introduction to AlgorithmsGoogle Scholar
  9. 9.
    Nocedal, J., Wright, S.: Numerical Optimization, Springer Series in Operations Research and Financial EngineeringGoogle Scholar
  10. 10.
    Chong, E.K.P., Żak, S.H.: An Introduction to Optimization, 2nd ednGoogle Scholar
  11. 11.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. The Morgan Kaufmann Series in Computer GraphicsGoogle Scholar
  12. 12.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sean Williams
    • 1
  • Kyle Lund
    • 2
    • 4
  • Chenxiang Lin
    • 2
    • 4
  • Peter Wonka
    • 3
  • Stuart Lindsay
    • 2
    • 4
    • 5
  • Hao Yan
    • 2
    • 4
  1. 1.Department of Computer ScienceUniversity of CaliforniaDavis
  2. 2.Center for Single Molecule Biophysics, The Biodesign InstituteArizona State UniversityTempe
  3. 3.School of Computing and InformaticsArizona State UniversityTempe
  4. 4.Department of Chemistry and BiologyArizona State UniversityTempe
  5. 5.Department of Physics and AstronomyArizona State UniversityTempe

Personalised recommendations