Advertisement

Sequentiality Induced by Spike Number in SNP Systems

  • Oscar H. Ibarra
  • Andrei Păun
  • Alfonso Rodríguez-Patón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5347)

Abstract

The spiking neural P systems are a class of computing devices recently introduced as a bridge between spiking neural nets and membrane computing. In this paper we consider sequential SNP systems where the sequentiality of the system is induced by a simple choice: the neuron with the maximum number of spikes out of the neurons that can spike at one step will fire. This corresponds to a global view of the whole network that makes the system sequential. We study the properties of this restriction.

Keywords

Active Neuron Clock Cycle Output Neuron Sequential Manner Rule Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge Univ. Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ibarra, O.H., Păun, A., Păun, G., Rodriguez-Paton, A., Sosik, P., Woodworth, S.: Normal forms for spiking neural P systems. Theor. Comput. Sci. 372(2-3), 196–217 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ibarra, O.H., Woodworth, S., Yu, F., Păun, A.: On spiking neural P systems and partially blind counter machines. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 113–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Maass, W.: Computing with spikes. Special Issue on Foundations of Information Processing of TELEMATIK 8(1), 32–36 (2002)Google Scholar
  6. 6.
    Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  7. 7.
    Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  8. 8.
    Păun, A., Popa, B.: P Systems with Proteins on Membranes. Fundamenta Informaticae 72(4), 467–483 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Păun, A., Popa, B.: P systems with proteins on membranes and membrane division. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Păun, G. (ed.): Membrane Computing – An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  11. 11.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. International Journal of Foundations of Computer Science 17(4), 975–1002 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Infinite spike trains in spiking neural P systems (submitted, 2006)Google Scholar
  13. 13.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Berlin (1997)zbMATHGoogle Scholar
  14. 14.
    The P Systems Web Page, http://psystems.disco.unimib.it

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Oscar H. Ibarra
    • 1
  • Andrei Păun
    • 2
    • 3
    • 4
  • Alfonso Rodríguez-Patón
    • 3
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Computer ScienceLouisiana Tech University, RustonLouisianaUSA
  3. 3.Departamento de Inteligencia Artificial, Faculdad de InformáticaUniversidad Politécnica de Madrid - UPMMadridSpain
  4. 4.Bioinformatics DepartmentNational Institute of Research and Development for Biological SciencesBucharestRomania

Personalised recommendations