Hyperloops Do Not Threaten the Notion of an Effective Procedure

  • Tim Button
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5635)


This paper develops my (forthcoming) criticisms of the philosophical significance of a certain sort of infinitary computational process, a hyperloop. I start by considering whether hyperloops suggest that “effectively computable” is vague (in some sense). I then consider and criticise two arguments by Hogarth, who maintains that hyperloops undermine the very idea of effective computability. I conclude that hyperloops, on their own, cannot threaten the notion of an effective procedure.


Turing Machine Physical Realisation Physical Machine Formal Question Arabic Numeral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benacerraf, P.: Tasks, Super-Tasks, and the Modern Eleatics. Journal of Philosophy 59, 765–784 (1962)CrossRefGoogle Scholar
  2. Button, T.: SAD Computers and two versions of the Church-Turing Thesis. British Journal for the Philosophy of Science (forthcoming)Google Scholar
  3. Davies, E.B.: Building Infinite Machines. British Journal for the Philosophy of Science 52, 671–682 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Dummett, M.: Hume’s Atomism about Events: a response to Ulrich Meyer. Philosophy 80, 141–144 (2005)CrossRefGoogle Scholar
  5. Earman, J., Norton, J.D.: Forever is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes. Philosophy of Science 60, 22–42 (1993)MathSciNetCrossRefGoogle Scholar
  6. Etesi, G., Németi, I.: Non-Turing Computations via Malament-Hogarth space-times. International Journal of Theoretical Physics 41, 341–370 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Hamkins, J.D., Lewis, A.: Infinite Time Turing Machines. Journal of Symbolic Logic 65, 567–604 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Hogarth, M.: Does General Relativity Allow an Observer to View an Eternity in a Finite Time? Foundations of Physics Letters 5, 173–181 (1992)MathSciNetCrossRefGoogle Scholar
  9. Hogarth, M.: Non-Turing Computers and Non-Turing Computability. In: Proceedings of the Philosophy of Science Association 1994, vol. 1, pp. 126–138 (1994)Google Scholar
  10. Hogarth, M.: Deciding Arithmetic using SAD computers. British Journal for the Philosophy of Science 55, 681–691 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Hogarth, M.: Non-Turing Computers are the New Non-Euclidean Geometries. International Journal of Unconventional Computing 5, 277–291 (2009a)Google Scholar
  12. Hogarth, M.: A New Problem for Rule Following. Natural Computing (2009b)Google Scholar
  13. Lakatos, I.: Proofs and Refutations. Cambridge University Press, Cambridge (1976)CrossRefzbMATHGoogle Scholar
  14. Németi, I., Dávid, G.: Relativistic Computers and the Turing Barrier. Journal of Applied Mathematics and Computation 178, 118–142 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Smith, P.: An Introduction to Gödel’s Theorems. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  16. Shapiro, S.: Computability, Proof, and Open-Texture. In: Olszewski, A., Wolenski, J., Janusz, R. (eds.) Church’s Thesis After 70 Years, pp. 420–455. Ontos Verlag (2006)Google Scholar
  17. Thomson, J.: Tasks and Supertasks. Analysis 15, 1–10 (1954)CrossRefGoogle Scholar
  18. Welch, P.D.: The Extent of Computation in Malament-Hogarth Spacetimes. British Journal for the Philosophy of Science 59, 659–674 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tim Button
    • 1
  1. 1.Cambridge UniversityUK

Personalised recommendations