An Approach to the Engineering of Cellular Models Based on P Systems

  • Francisco J. Romero-Campero
  • Natalio Krasnogor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5635)

Abstract

Living cells assembled into colonies or tissues communicate using complex systems. These systems consist in the interaction between many molecular species distributed over many compartments. Among the different cellular processes used by cells to monitor their environment and respond accordingly, gene regulatory networks, rather than individual genes, are responsible for the information processing and orchestration of the appropriate response [16].

In this respect, synthetic biology has emerged recently as a novel discipline aiming at unravelling the design principles in gene regulatory systems by synthetically engineering transcriptional networks which perform a specific and prefixed task [2]. Formal modelling and analysis are key methodologies used in the field to engineer, assess and compare different genetic designs or devices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, U.: Network motifs: theory and experimental approaches. Nature Reviews Genetics 8, 450–461 (2007)CrossRefGoogle Scholar
  2. 2.
    Andrianantoandro, E., Basu, S., Karig, D., Weiss, R.: Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems biology 2, 2006.0028 (2006)Google Scholar
  3. 3.
    Bernardini, F., Gheorghe, M., Romero-Campero, F.J., Walkinshaw, N.: A Hybrid Approach to Modeling Biological Systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 138–159. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bernardini, F., Gheorghe, M., Krasnogor, N.: Quorum Sensing P Systems. Theoretical Computer Science 371(1-2), 20–33 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bernardini, F., Manca, V.: Dynamical aspects of P systems. BioSystems 70(2), 85–93 (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., Martegani, E.: Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. Journal of Biotechnology 133(3), 377–385 (2008)CrossRefGoogle Scholar
  7. 7.
    Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. International Journal of Foundations of Computer Science 17(1), 27–48 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gillespie, D.T.: Stochastic Simulation of Chemical Kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)CrossRefGoogle Scholar
  9. 9.
    Kaern, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expression: from theories to phenotypes. Nature Reviews Genetics 6, 451–464 (2005)CrossRefGoogle Scholar
  10. 10.
    Krasnogor, N., Gheorghe, M., Terrazas, G., Diggle, S., Williams, P., Camara, M.: An appealing computational mechanism drawn from bacterial quorum sensing. Bulletin of the EATCS 85, 135–148 (2005)MathSciNetMATHGoogle Scholar
  11. 11.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Păun, A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modeling signal transduction using P systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 100–122. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: P Systems, a new computational modelling tool for systems biology. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. International Journal of Foundations of Computer Science 17(1), 183–204 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ptashne, M., Gann, A.: Genes and Signals. Cold Spring Harbor Laboratory Press (2002)Google Scholar
  17. 17.
    Romero-Campero, F.J., Pérez-Jiménez, M.J.: Modelling gene expression control using P systems: the Lac Operon, a case study. BioSystems 91(3), 438–457 (2008)CrossRefGoogle Scholar
  18. 18.
    Romero-Campero, F.J., Pérez-Jiménez, M.J.: A model of the quorum sensing system in Vibrio fischeri using P systems. Artificial Life 14(1), 1–15 (2008)CrossRefGoogle Scholar
  19. 19.
    Păun, G., Romero-Campero, F.J.: Membrane Computing as a Modeling Framework. Cellular Systems Case Studies. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 168–214. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Romero-Campero, F.J., Gheorghe, M., Ciobanu, G., Auld, J.M., Pérez-Jiménez, M.J.: Cellular modelling using P systems and process algebra. Progress in Natural Science 17(4), 375–383 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Romero-Campero, F.J., Cao, H., Cámara, M., Krasnogor, N.: Structure and Parameter Estimation for Cell Systems Biology Models. In: Proc. of the Genetic and Evolutionary Computation Conference, Atlanta, USA, July 12 - 16, pp. 331–338 (2008)Google Scholar
  22. 22.
    Romero-Campero, F.J., Twycross, J., Cámara, M., Bennett, M., Gheorghe, M., Krasnogor, N.: Modular Assembly of Cell Systems Biology Models Using P Systems. International Journal of Foundations of Computer Science (2008) (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francisco J. Romero-Campero
    • 1
  • Natalio Krasnogor
    • 1
  1. 1.Automated Scheduling, Optimisation and Planning Research Group School of Computer ScienceUniversity of NottinghamNottinghamUnited Kingdom

Personalised recommendations