Complexity of Existential Positive First-Order Logic

  • Manuel Bodirsky
  • Miki Hermann
  • Florian Richoux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5635)


Let Γ be a (not necessarily finite) structure with a finite relational signature. We prove that deciding whether a given existential positive sentence holds in Γ is in LOGSPACE or complete for the class CSP(Γ)NP under deterministic polynomial-time many-one reductions. Here, CSP(Γ)NP is the class of problems that can be reduced to the constraint satisfaction problem of Γ under non-deterministic polynomial-time many-one reductions.


Computational Complexity Existential Positive First-Order Logic Constraint Satisfaction Problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodirsky, M., Grohe, M.: Non-Dichotomies in Constraint Satisfaction Complexity. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 184–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  3. 3.
    Hermann, M., Richoux, F.: On the Computational Complexity of Monotone Constraint Satisfaction Problems. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Ladner, R.E., Lynch, N.A., Selman, A.L.: A Comparison of Polynomial-Time Reducibilities. Theoretical Computer Science 1(2), 103–124 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Martin, B.: Dichotomies and Duality in First-order Model Checking Problems. CoRR abs/cs/0609022 (2006)Google Scholar
  6. 6.
    Martin, B.: First-Order Model Checking Problems Parameterized by the Model. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 417–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Vollmer, H.: Complexity of Constraints (A collection of survey articles). LNCS, vol. 5250. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Manuel Bodirsky
    • 1
  • Miki Hermann
    • 1
  • Florian Richoux
    • 1
  1. 1.LIX (CNRS, UMR 7161), École PolytechniquePalaiseauFrance

Personalised recommendations