Advertisement

The First Order Theories of the Medvedev and Muchnik Lattices

  • Andrew Lewis
  • André Nies
  • Andrea Sorbi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5635)

Abstract

We show that the first order theories of the Medevdev lattice and the Muchnik lattice are both computably isomorphic to the third order theory of the natural numbers.

Keywords

Order Variable Logical System Atomic Formula Order Theory Mass Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyment, E.: Certain properties of the Medvedev lattice. Mathematics of the USSR Sbornik 30, 321–340 (1976) (English Translation)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lerman, M.: Degrees of Unsolvability. Perspectives in Mathematical Logic. Springer, Heidelberg (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Medevdev, Y.T.: Degrees of difficulty of the mass problems. Dokl. Nauk. SSSR 104, 501–504 (1955)MathSciNetGoogle Scholar
  4. 4.
    Muchnik, A.: On strong and weak reducibility of algorithmic problems. Sibirskii Matematicheskii Zhurnal 4, 1328–1341 (1963) (Russian)MathSciNetGoogle Scholar
  5. 5.
    Nies, A.: Undecidable fragments of elementary theories. Algebra Universalis 35, 8–33 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  7. 7.
    Shore, R.A.: Degree structures: local and global investigations. Bull. Symbolic Logic 12(3), 369–389 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Simpson, S.G.: First order theory of the degrees of recursive unsolvability. Ann. of Math. 105, 121–139 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Slaman, T.A., Woodin, W.H.: Definability in the Turing degrees. Illinois J. Math. 30, 320–334 (1986)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sorbi, A.: The Medvedev lattice of degrees of difficulty. In: Cooper, S.B., Slaman, T.A., Wainer, S.S. (eds.) Computability, Enumerability, Unsolvability - Directions in Recursion theory. London Mathematical Society Lecture Notes Series, pp. 289–312. Cambridge University Press, New York (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrew Lewis
    • 1
  • André Nies
    • 2
  • Andrea Sorbi
    • 1
  1. 1.University of SienaSienaItaly
  2. 2.Department of Computer ScienceUniversity of AucklandNew Zealand

Personalised recommendations