An Application of Martin-Löf Randomness to Effective Probability Theory

  • Mathieu Hoyrup
  • Cristóbal Rojas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5635)

Abstract

In this paper we provide a framework for computable analysis of measure, probability and integration theories. We work on computable metric spaces with computable Borel probability measures. We introduce and study the framework of layerwise computability which lies on Martin-Löf randomness and the existence of a universal randomness test. We then prove characterizations of effective notions of measurability and integrability in terms of layerwise computability. On the one hand it gives a simple way of handling effective measure theory, on the other hand it provides powerful tools to study Martin-Löf randomness, as illustrated in a sequel paper.

Keywords

Algorithmic randomness universal test computable analysis effective probability theory Lebesgue integration layerwise computability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edalat, A., Heckmann, R.: A computational model for metric spaces. Theor. Comput. Sci. 193, 53–73 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  3. 3.
    Wu, Y., Weihrauch, K.: A computable version of the daniell-stone theorem on integration and linear functionals. Theor. Comput. Sci. 359(1-3), 28–42 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989)CrossRefMATHGoogle Scholar
  5. 5.
    Zhang, B.Y., Zhong, N.: L p-computability. Math. Logic Q. 45, 449–456 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Kunkle, D.: Type-2 computability on spaces of integrable functions. Math. Logic Q. 50(4-5), 417–430 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    S̃anin, N.: Constructive Real Numbers and Constructive Function Spaces. Translations of Mathematical Monographs, vol. 21. American Mathematical Society, Providence (1968)Google Scholar
  8. 8.
    Edalat, A.: A computable approach to measure and integration theory. In: LICS 2007: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, Washington, DC, USA, pp. 463–472. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  9. 9.
    Bosserhoff, V.: Notions of probabilistic computability on represented spaces. Journal of Universal Computer Science 14(6), 956–995 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hertling, P., Weihrauch, K.: Random elements in effective topological spaces with measure. Inf. Comput. 181(1), 32–56 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gács, P.: Uniform test of algorithmic randomness over a general space. Theor. Comput. Sci. 341, 91–137 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hoyrup, M., Rojas, C.: Computability of probability measures and Martin-Löf randomness over metric spaces. Inf. Comput (2009) (in press/arxiv)Google Scholar
  14. 14.
    Hoyrup, M., Rojas, C.: Applications of effective probability theory to Martin-Löf randomness. In: ICALP (2009)Google Scholar
  15. 15.
    Davie, G.: The Borel-Cantelli lemmas, probability laws and Kolmogorov complexity. Annals of Probability 29(4), 1426–1434 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Yasugi, M., Mori, T., Tsujii, Y.: Effective properties of sets and functions in metric spaces with computability structure. Theor. Comput. Sci. 219(1-2), 467–486 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theor. Comput. Sci. 305(1-3), 43–76 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Edalat, A.: When scott is weak on the top. Mathematical Structures in Computer Science 7(5), 401–417 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Schröder, M.: Admissible representations for probability measures. Math. Log. Q. 53(4-5), 431–445 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Zvonkin, A., Levin, L.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematics Surveys 256, 83–124 (1970)CrossRefMATHGoogle Scholar
  21. 21.
    Rojas, C.: Randomness and ergodic theory: an algorithmic point of view. PhD thesis, Ecole Polytechnique (2008)Google Scholar
  22. 22.
    Billingsley, P.: Convergence of Probability Measures. John Wiley, New York (1968)MATHGoogle Scholar
  23. 23.
    Bressoud, D.M.: A Radical Approach to Lebesgue’s Theory of Integration. Mathematical Association of America Textbooks. Cambridge University Press, Cambridge (2008)MATHGoogle Scholar
  24. 24.
    Müller, N.T.: Computability on random variables. Theor. Comput. Sci. 219(1-2), 287–299 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mathieu Hoyrup
    • 1
  • Cristóbal Rojas
    • 2
  1. 1.LORIA - 615, rue du jardin botaniqueVandœuvre-lès-NancyFrance
  2. 2.Institut de Mathématiques de LuminyMarseille Cedex 9France

Personalised recommendations