Graph States and the Necessity of Euler Decomposition

  • Ross Duncan
  • Simon Perdrix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5635)


Coecke and Duncan recently introduced a categorical formalisation of the interaction of complementary quantum observables. In this paper we use their diagrammatic language to study graph states, a computationally interesting class of quantum states. We give a graphical proof of the fixpoint property of graph states. We then introduce a new equation, for the Euler decomposition of the Hadamard gate, and demonstrate that Van den Nest’s theorem—locally equivalent graphs represent the same entanglement—is equivalent to this new axiom. Finally we prove that the Euler decomposition equation is not derivable from the existing axioms.


quantum computation monoidal categories graphical calculi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004, pp. 415–425. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  2. 2.
    Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Proceedings of the International School of Physics “Enrico Fermi” on Quantum Computers, Algorithms and Chaos (July 2005)Google Scholar
  4. 4.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)CrossRefGoogle Scholar
  5. 5.
    Van den Nest, M., Dehaene, J., De Moor, B.: Graphical description of the action of local clifford transformations on graph states. Physical Review A 69, 022316 (2004)CrossRefGoogle Scholar
  6. 6.
    Kelly, G., Laplaza, M.: Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, 193–213 (1980)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Joyal, A., Street, R.: The geometry of tensor categories i. Advances in Mathematics 88, 55–113 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Selinger, P.: Dagger compact closed categories and completely positive maps. In: Proceedings of the 3rd International Workshop on Quantum Programming Languages (2005)Google Scholar
  9. 9.
    Duncan, R.: Types for Quantum Computation. PhD thesis. Oxford University (2006)Google Scholar
  10. 10.
    Coecke, B., Pavlovic, D., Vicary, J.: A new description of orthogonal bases. Math. Structures in Comp. Sci., 13 (2008), (to appear)

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ross Duncan
    • 1
  • Simon Perdrix
    • 2
    • 3
  1. 1.Oxford University Computing LaboratoryOxfordUK
  2. 2.LFCSUniversity of EdinburghUK
  3. 3.PPSUniversité Paris DiderotFrance

Personalised recommendations