Drift-Aware Ensemble Regression

  • Frank Rosenthal
  • Peter Benjamin Volk
  • Martin Hahmann
  • Dirk Habich
  • Wolfgang Lehner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5632)

Abstract

Regression models are often required for controlling production processes by predicting parameter values. However, the implicit assumption of standard regression techniques that the data set used for parameter estimation comes from a stationary joint distribution may not hold in this context because manufacturing processes are subject to physical changes like wear and aging, denoted as process drift. This can cause the estimated model to deviate significantly from the current state of the modeled system. In this paper, we discuss the problem of estimating regression models from drifting processes and we present ensemble regression, an approach that maintains a set of regression models—estimated from different ranges of the data set—according to their predictive performance. We extensively evaluate our approach on synthetic and real-world data.

Keywords

Ensemble Method Regression Process Drift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spitzlsperger, G., Schmidt, C., Ernst, G., Strasser, H., Speil, M.: Fault detection for a via etch process using adaptive multivariate methods. IEEE Transactions on Semiconductor Manufacturing 18(4), 528–533 (2005)CrossRefGoogle Scholar
  2. 2.
    Bunday, B.D., Bishop, M., Donald, W., McCormack, J., Villarrubia, J.S., Vladar, A.E., Dixson, R., Vorburger, T.V., Orji, N.G., Allgair, J.A.: Determination of optimal parameters for cd-sem measurement of line-edge roughness. Metrology, Inspection, and Process Control for Microlithography XVIII 5375(1), 515–533 (2004)CrossRefGoogle Scholar
  3. 3.
    Yue, H.H., Qin, S.J., Wiseman, J., Toprac, A.: Plasma etching endpoint detection using multiple wavelengths for small open-area wafers. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 19(1), 66–75 (2001)CrossRefGoogle Scholar
  4. 4.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning. Springer, Heidelberg (2003)MATHGoogle Scholar
  5. 5.
    DiRaddo, R., Girard, P., Chang, S.: Process drift and model-based control of forming operations. In: American Control Conference, 2002. Proceedings of the 2002, vol. 5, pp. 3588–3593 (2002)Google Scholar
  6. 6.
    Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine Learning 1, 317 (1986)Google Scholar
  7. 7.
    Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)Google Scholar
  8. 8.
    Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: KDD 2001: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 97–106 (2001)Google Scholar
  9. 9.
    Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: KDD 2001: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 377–382. ACM, New York (2001)Google Scholar
  10. 10.
    Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: KDD 2003: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 226–235. ACM, New York (2003)Google Scholar
  11. 11.
    Kolter, J., Maloof, M.: Dynamic weighted majority: a new ensemble method for tracking concept drift. In: Third IEEE International Conference on Data Mining (ICDM), November 2003, pp. 123–130 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Frank Rosenthal
    • 1
  • Peter Benjamin Volk
    • 1
  • Martin Hahmann
    • 1
  • Dirk Habich
    • 1
  • Wolfgang Lehner
    • 1
  1. 1.Database Technology GroupTechnische Universität Dresden, Email: dbinfo@mail.inf.tu-dresden.deDresdenGermany

Personalised recommendations