Data Mining of Agricultural Yield Data: A Comparison of Regression Models

  • Georg Ruß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5633)


Nowadays, precision agriculture refers to the application of state-of-the-art GPS technology in connection with small-scale, sensor-based treatment of the crop. This introduces large amounts of data which are collected and stored for later usage. Making appropriate use of these data often leads to considerable gains in efficiency and therefore economic advantages. However, the amount of data poses a data mining problem – which should be solved using data mining techniques. One of the tasks that remains to be solved is yield prediction based on available data. From a data mining perspective, this can be formulated and treated as a multi-dimensional regression task. This paper deals with appropriate regression techniques and evaluates four different techniques on selected agriculture data. A recommendation for a certain technique is provided.


Precision Agriculture Data Mining Regression Modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)Google Scholar
  2. 2.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)Google Scholar
  3. 3.
    Collobert, R., Bengio, S., Williamson, C.: Svmtorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research 1, 143–160 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Corwin, D.L., Lesch, S.M.: Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron. J. 95(3), 455–471 (2003)CrossRefGoogle Scholar
  5. 5.
    Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers EC-14, 326–334 (1965)CrossRefzbMATHGoogle Scholar
  6. 6.
    Crone, S.F., Lessmann, S., Pietsch, S.: Forecasting with computational intelligence - an evaluation of support vector regression and artificial neural networks for time series prediction. In: International Joint Conference on Neural Networks, 2006. IJCNN 2006, pp. 3159–3166 (2006)Google Scholar
  7. 7.
    Drummond, S., Joshi, A., Sudduth, K.A.: Application of neural networks: precision farming. In: International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, vol. 1, pp. 211–215 (1998)Google Scholar
  8. 8.
    Gunn, S.R.: Support vector machines for classification and regression. Technical Report, School of Electronics and Computer Science, University of Southampton, Southampton, U.K. (1998)Google Scholar
  9. 9.
    Hagan, M.T.: Neural Network Design (Electrical Engineering). Thomson Learning (December 1995)Google Scholar
  10. 10.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1998)zbMATHGoogle Scholar
  11. 11.
    Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Reading (1990)Google Scholar
  12. 12.
    Huang, C., Yang, L., Wylie, B., Homer, C.: A strategy for estimating tree canopy density using landsat 7 etm+ and high resolution images over large areas. In: Proceedings of the Third International Conference on Geospatial Information in Agriculture and Forestry (2001)Google Scholar
  13. 13.
    Liu, J., Miller, J.R., Haboudane, D., Pattey, E.: Exploring the relationship between red edge parameters and crop variables for precision agriculture. In: 2004 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. 1276–1279 (2004)Google Scholar
  14. 14.
    Lobell, D.B., Ivan Ortiz-Monasterio, J., Asner, G.P., Naylor, R.L., Falcon, W.P.: Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape. Agronomy Journal 97, 241–249 (2005)Google Scholar
  15. 15.
    Maszczyk, T., Duch, W.: Support Vector Machines for Visualization and Dimensionality Reduction. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 346–356. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Meier, U.: Entwicklungsstadien mono- und dikotyler Pflanzen. Biologische Bundesanstalt für Land- und Forstwirtschaft, Braunschweig, Germany (2001)Google Scholar
  17. 17.
    Mejía-Guevara, I., Kuri-Morales, Á.F.: Evolutionary feature and parameter selection in support vector regression. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS, vol. 4827, pp. 399–408. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Middleton, E.M., Campbell, P.K.E., Mcmurtrey, J.E., Corp, L.A., Butcher, L.M., Chappelle, E.W.: “Red edge” optical properties of corn leaves from different nitrogen regimes. In: 2002 IEEE International Geoscience and Remote Sensing Symposium, vol. 4, pp. 2208–2210 (2002)Google Scholar
  19. 19.
    Mitchell, T.M.: Machine Learning. McGraw-Hill Science/Engineering/Math (March 1997)Google Scholar
  20. 20.
    Neeteson, J.J.: Nitrogen Management for Intensively Grown Arable Crops and Field Vegetables, ch. 7, pp. 295–326. CRC Press, Haren (1995)Google Scholar
  21. 21.
    Orr, M., Hallam, J., Murray, A., Ninomiya, S., Oide, M., Leonard, T.: Combining regression trees and radial basis function networks. International Journal of Neural Systems 10 (1999)Google Scholar
  22. 22.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  23. 23.
    Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  24. 24.
    Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Estimation of neural network parameters for wheat yield prediction. In: Bramer, M. (ed.) Artificial Intelligence in Theory and Practice II. IFIP International Federation for Information Processing, vol. 276, pp. 109–118. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Optimizing wheat yield prediction using different topologies of neural networks. In: Verdegay, J.L., Ojeda-Aciego, M., Magdalena, L. (eds.) Proceedings of IPMU 2008, pp. 576–582. University of Málaga (June 2008)Google Scholar
  26. 26.
    Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Data mining with neural networks for wheat yield prediction. In: Perner, P. (ed.) ICDM 2008. LNCS, vol. 5077, pp. 47–56. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Schneider, M., Wagner, P.: Prerequisites for the adoption of new technologies - the example of precision agriculture. In: Agricultural Engineering for a Better World, Düsseldorf. VDI Verlag GmbH (2006)Google Scholar
  28. 28.
    Serele, C.Z., Gwyn, Q.H.J., Boisvert, J.B., Pattey, E., Mclaughlin, N., Daoust, G.: Corn yield prediction with artificial neural network trained using airborne remote sensing and topographic data. In: 2000 IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. 384–386 (2000)Google Scholar
  29. 29.
    Smola, A.J., Olkopf, B.S.: A tutorial on support vector regression. Technical report, Statistics and Computing (1998)Google Scholar
  30. 30.
    Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  31. 31.
    Wagner, P., Schneider, M.: Economic benefits of neural network-generated site-specific decision rules for nitrogen fertilization. In: Stafford, J.V. (ed.) Proceedings of the 6th European Conference on Precision Agriculture, pp. 775–782 (2007)Google Scholar
  32. 32.
    Weigert, G.: Data Mining und Wissensentdeckung im Precision Farming - Entwicklung von ökonomisch optimierten Entscheidungsregeln zur kleinräumigen Stickstoff-Ausbringung. PhD thesis, TU München (2006)Google Scholar
  33. 33.
    Wu, S., Chow, T.W.S.: Support vector visualization and clustering using self-organizing map and vector one-class classification. In: Proceedings of the International Joint Conference on Neural Networks, vol. 1, pp. 803–808 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Georg Ruß
    • 1
  1. 1.Otto-von-Guericke-Universität MagdeburgGermany

Personalised recommendations