A Hybrid Fuzzy Approach for Human Eye Gaze Pattern Recognition

  • Dingyun Zhu
  • B. Sumudu U. Mendis
  • Tom Gedeon
  • Akshay Asthana
  • Roland Goecke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5507)

Abstract

Face perception and text reading are two of the most developed visual perceptual skills in humans. Understanding which features in the respective visual patterns make them differ from each other is very important for us to investigate the correlation between human’s visual behavior and cognitive processes. We introduce our fuzzy signatures with a Levenberg-Marquardt optimization method based hybrid approach for recognizing the different eye gaze patterns when a human is viewing faces or text documents. Our experimental results show the effectiveness of using this method for the real world case. A further comparison with Support Vector Machines (SVM) also demonstrates that by defining the classification process in a similar way to SVM, our hybrid approach is able to provide a comparable performance but with a more interpretable form of the learned structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althoff, R.R., Cohen, N.J.: Eye-movement Based Memory Effect: A Reprocessing Effect in Face Perception. Journal of Experimental Psychology: Learning, Memory, and Cognition 25, 997–1010 (1999)Google Scholar
  2. 2.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATHGoogle Scholar
  3. 3.
    Gedeon, T.D., Koczy, L.T., Wong, K.W., Liu, P.: Effective Fuzzy Systems for Complex Structured Data. In: Proceedings of IASTED International Conference Control and Applications (CA 2001), Banff, Canada, pp. 184–187 (2001)Google Scholar
  4. 4.
    Gedeon, T.D., Zhu, D., Mendis, B.S.U.: Eye Gaze Assistance for a Game-like Interactive Task. International Journal of Computer Games Technology 2008, Article ID 623752(2008)Google Scholar
  5. 5.
    Hsu, C., Chang, C., Lin, C.: A Practical Guide to Support Vector Classification. Technical Report, Department of Computer Science, National Taiwan University (2005)Google Scholar
  6. 6.
    Koczy, L.T., Vamos, T., Biro, G.: Fuzzy Signatures. In: Proceedings of the 4th Meeting of the Euro Working Group on Fuzzy Sets and the 2nd International Conference on Soft and Intelligent Computing (EUROPUSE-SIC 1999), Budapest, Hungary, pp. 210–217 (1999)Google Scholar
  7. 7.
    Marquardt, D.: An Algorithm for Least Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics 11(2), 431–441 (1963)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Mendis, B.S.U., Gedeon, T.D.: A Comparison: Fuzzy Signatures and Choquet Integral. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) WCCI 2008. LNCS, vol. 5050, pp. 1464–1471. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Mendis, B.S.U., Gedeon, T.D., Botzheim, J., Koczy, L.T.: Generalized Weighted Relevance Aggregation Operators for Hierarchical Fuzzy Signatures. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA 2006), Jointly with the International Conference on Intelligent Agents, Web Technologies and International Commerce (IAWTIC 2006), Sydney, Australia, pp. 198–203 (2006)Google Scholar
  10. 10.
    Mendis, B.S.U., Gedeon, T.D., Koczy, L.T.: Learning Generalized Weighted Relevance Aggregation Operators Using Levenberg-Marquardt Method. In: Proceedings of the 6th International Conference on Hybrid Intelligent System (HIS 2006) and 4th Conference on Neuro-Computing and Evolving Intelligence (NCEI 2006), New Zealand, pp. 34–39 (2006)Google Scholar
  11. 11.
    Vamos, T., Koczy, L.T., Biro, G.: Fuzzy Signatures in Data Mining. In: Proceedings of Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada, vol. 5, pp. 2841–2846 (2001)Google Scholar
  12. 12.
    Wong, K.W., Gedeon, T.D., Koczy, L.T.: Construction of Fuzzy Signature from Data: An Example of SARS Pre-clinical Diagnosis System. In: Processings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2004), Budapest, Hungary, pp. 1649–1654 (2004)Google Scholar
  13. 13.
    Yarbus, A.: Eye Movements and Vision. Plenum Press, New York (1967)CrossRefGoogle Scholar
  14. 14.
    Zhu, D., Gedeon, T.: Fuzzy Logic for Cooperative Robot Communication. In: Nguyen, N.T., Jo, G.S., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2008. LNCS, vol. 4953, pp. 401–410. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dingyun Zhu
    • 1
  • B. Sumudu U. Mendis
    • 1
  • Tom Gedeon
    • 1
  • Akshay Asthana
    • 2
  • Roland Goecke
    • 2
  1. 1.School of Computer ScienceAustralia
  2. 2.School of EngineeringThe Australian National UniversityActonAustralia

Personalised recommendations