Advertisement

Patterns of Interactions in Complex Social Networks Based on Coloured Motifs Analysis

  • Katarzyna Musial
  • Krzysztof Juszczyszyn
  • Bogdan Gabrys
  • Przemysław Kazienko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5507)

Abstract

Coloured network motifs are small subgraphs that enable to discover and interpret the patterns of interaction within the complex networks. The analysis of three-nodes motifs where the colour of the node reflects its high – white node or low – black node centrality in the social network is presented in the paper. The importance of the vertices is assessed by utilizing two measures: degree prestige and degree centrality. The distribution of motifs in these two cases is compared to mine the interconnection patterns between nodes. The analysis is performed on the social network derived from email communication.

Keywords

Social Network Degree Centrality Network Node Social Network Analysis Random Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, C.N.: A method for processing sociometric data. Sociometry 26, 268–269 (1963)CrossRefGoogle Scholar
  2. 2.
    Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chung-Yuan, H., Chuen-Tsai, S., Chia-Ying, C., Ji-Lung, H.: Bridge and brick motifs in complex networks. Physica A 377, 340–350 (2007)CrossRefGoogle Scholar
  4. 4.
    Itzkovitz, S., Milo, R., Kashtan, N., Ziv, G., Alon, U.: Subgraphs in random networks. Phys. Rev. E. 68, 26127 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Juszczyszyn, K., Musiał, K., Kazienko, P.: Local Topology of Social Network Based on Motif Analysis. In: 11th International Conference on Knowledge-Based Intelligent Information & Engineering Systems. LNCS (LNAI), Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)CrossRefGoogle Scholar
  7. 7.
    Mangan, S., Alon, U.: Structure and function of the feedforward loop network motif. Proc. Natl Acad. Sci., USA 100, 11980–11985 (2003)CrossRefGoogle Scholar
  8. 8.
    Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334, 197–204 (2003)CrossRefGoogle Scholar
  9. 9.
    Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)CrossRefGoogle Scholar
  10. 10.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  11. 11.
    Proctor, C.H., Loomis, C.P.: Analysis of sociometric data. In: Jahoda, M., Deutch, M., Cok, S. (eds.) Research Methods in Social Relations, pp. 561–586. Dryden Press, NewYork (1951)Google Scholar
  12. 12.
    Shaw, M.E.: Group structure and the behavior of individuals in small groups. Journal of Psychology 38, 139–149 (1954)CrossRefGoogle Scholar
  13. 13.
    Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transciptional regualtion network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRefGoogle Scholar
  14. 14.
    Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J.-P., Oltvai, Z.N., Barabasi, A.: The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc. Natl Acad. Sci. USA 101, 17, 940 (2004)CrossRefGoogle Scholar
  15. 15.
    Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cambridge University Press, New York (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Young-Ho, E., Soojin, L., Hawoong, J.: Exploring local structural organization of metabolic networks using subgraph patterns. Journal of Theoretical Biology 241, 823–829 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Katarzyna Musial
    • 1
  • Krzysztof Juszczyszyn
    • 1
  • Bogdan Gabrys
    • 2
  • Przemysław Kazienko
    • 1
  1. 1.Wroclaw University of TechnologyPoland
  2. 2.Bournemouth UniversityUK

Personalised recommendations