Time Evaluation for WTA Hopfield Type Circuits Affected by Cross-Coupling Capacitances

  • Ruxandra L. Costea
  • Corneliu A. Marinov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5507)


A continuous time neural network of Hopfield type is considered. It is a W(inner) T(akes) A(ll) selector. Its inputs are capacitively coupled to model the parasitics or faults of overcrowded chip layers. A certain parameter setting allows the correct selection of the maximum element from an input list. As processing time is a performance criterion, we infer upper bounds of it, explicitly depending on circuit and list parameters. Our method consists of converting the system of nonlinear differential equations describing the circuit to a system of decoupled linear inequalities. The results are checked by numerical simulation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two state neurons. Proc. Nat. Academy Sci. 81, 3088–3092 (1984)CrossRefGoogle Scholar
  2. 2.
    Hopfield, J.J., Tank, D.W.: Neural computation of decisions optimization problems. Biol. Cybern. 52, 141–152 (1985)MATHGoogle Scholar
  3. 3.
    Atkins, M.: Sorting by Hopfield nets. In: Proc. Int. Joint Conf. Neural Networks, Washington DC, vol. 2, pp. 65–68 (1992)Google Scholar
  4. 4.
    Dranger, T.S., Priemer, R.: Collective process circuit that sorts. IEE Proceedings-Circuits, Devices, Syst. 144, 145–148 (1997)CrossRefGoogle Scholar
  5. 5.
    Cao, J.: Global exponential stability of Hopfield neural networks. Int. J. Syst. Sci. 32(2), 233–236 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Majani, E., Erlanson, R., Abu-Mostafa, Y.: On the K-winner-take-all network. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, vol. 1, pp. 634–642. Morgan-Kafmann, San Mateo (1989)Google Scholar
  7. 7.
    Zhang, Y., Heng, P.A., Fu, W.C.: Estimate of exponential convergence rate and exponential stability for neural network. IEEE Trans. Neural Networks 10(6), 1487–1493 (1999)CrossRefGoogle Scholar
  8. 8.
    Chen, T., Lu, W., Amari, S.: Global Convergence Rate of Recurrently Connected Neural Networks. Neural Computation 14, 2947–2957 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Calvert, B., Marinov, C.A.: Another K-winners-take-all analog neural network. IEEE Trans. Neural Networks 11, 829–838 (2000)CrossRefGoogle Scholar
  10. 10.
    Marinov, C.A., Calvert, B.D.: Performance analysis for a K-Winners-Take-All analog neural network: Basic theory. IEEE Trans. Neural Networks 14, 766–780 (2003)CrossRefGoogle Scholar
  11. 11.
    Cho, K.: Delay calculation capturing crosstalk effects due to coupling capacitors. Electronic Letters 41(8), 458–460 (2005)CrossRefGoogle Scholar
  12. 12.
    Marinov, C.A., Hopfield, J.J.: Stable computational dynamics for a class of circuits with O(N) interconnections capable of KWTA and rank extractions. IEEE Trans. Circuits and Systems, Part 1 52, 949–959 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Costea, R.L.: Artificial neural systems - Switching times for WTA circuits of Hopfield type. Doctoral Disertation, Polytechnic University of Bucharest (September 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ruxandra L. Costea
    • 1
  • Corneliu A. Marinov
    • 1
  1. 1.Department of Electrical EngineeringPolytechnic University of BucharestRomania

Personalised recommendations