Opportunistic Adaptation Knowledge Discovery

  • Fadi Badra
  • Amélie Cordier
  • Jean Lieber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5650)


Adaptation has long been considered as the Achilles’ heel of case-based reasoning since it requires some domain-specific knowledge that is difficult to acquire. In this paper, two strategies are combined in order to reduce the knowledge engineering cost induced by the adaptation knowledge (AK) acquisition task: AK is learned from the case base by the means of knowledge discovery techniques, and the AK acquisition sessions are opportunistically triggered, i.e., at problem-solving time.


Propositional Variable Support Threshold Adaptation Rule Source Case Green Onion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt, A.: Knowledge-Intensive Case-Based Reasoning in Creek. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Badra, F., Lieber, J.: Representing Case Variations for Learning General and Specific Adaptation Rules. In: Cesta, A., Fakotakis, N. (eds.) Proceedings of the Fourth Starting AI Researcher’s Symposium (STAIRS 2008), pp. 1–11 (2008)Google Scholar
  3. 3.
    Badra, F., Bendaoud, R., Bentebibel, R., Champin, P.-A., Cojan, J., Cordier, A., Després, S., Jean-Daubias, S., Lieber, J., Meilender, T., Mille, A., Nauer, E., Napoli, A., Toussaint, Y.: Taaable: Text Mining, Ontology Engineering, and Hierarchical Classification for Textual Case-Based Cooking. In: Schaaf, M. (ed.) Computer Cooking Contest - Workshop at European Conference on Case-Based Reasoning (ECCBR 2008), pp. 219–228 (2008)Google Scholar
  4. 4.
    Schaaf, M. (ed.) ECCBR Workshops, ECCBR 2008, The 9th European Conference on Case-Based Reasoning, Workshop Proceedings (2008)Google Scholar
  5. 5.
    d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case Base Mining for Adaptation Knowledge Acquisition. In: Proceedings of the International Conference on Artificial Intelligence, IJCAI 2007, pp. 750–756 (2007)Google Scholar
  6. 6.
    de Mántaras, R.L., Plaza, E.: Case-Based Reasoning: An Overview. AI Communications 10(1), 21–29 (1997)Google Scholar
  7. 7.
    Cordier, A.: Interactive and Opportunistic Knowledge Acquisition in Case-Based Reasoning, Phd Thesis, Université Lyon 1 (2008)Google Scholar
  8. 8.
    Cordier, A., Fuchs, B., Lana de Carvalho, L., Lieber, J., Mille, A.: Opportunistic Acquisition of Adaptation Knowledge and Cases - The IakA Approach. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 150–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Craw, S., Wiratunga, N., Rowe, R.: Learning Adaptation Knowledge to Improve Case-Based Reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hammond, K.: CHEF: A model of case-based planning. In: Proceedings of the 5th National Conference on Artificial Intelligence, pp. 267–271. AAAI Press, Menlo Park (1986)Google Scholar
  11. 11.
    Hanney, K., Keane, M.T.: The Adaptation Knowledge Bottleneck: How to Unblock it By Learning From Cases. In: Proceedings of the 2nd International Conference on CBR, pp. 359–370 (1997)Google Scholar
  12. 12.
    Leake, D., Kinley, A., Wilson, D.: Acquiring Case Adaptation Knowledge: A Hybrid Approach. In: Proc. of the 13th National Conference on Artificial Intelligence, pp. 684–689 (1996)Google Scholar
  13. 13.
    Melis, E., Lieber, J., Napoli, A.: Reformulation in Case-Based Reasoning. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 172–183. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fadi Badra
    • 1
  • Amélie Cordier
    • 2
  • Jean Lieber
    • 1
  1. 1.LORIA (CNRS, INRIA, Nancy Universities), BP 239Vandœuvre-lès-NancyFrance
  2. 2.LIRIS CNRS UMR 5202Université Lyon 1, INSA Lyon, Université Lyon 2, ECLVilleurbanneFrance

Personalised recommendations