Robust Measures of Complexity in TCBR

  • M. A. Raghunandan
  • Sutanu Chakraborti
  • Deepak Khemani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5650)


In TCBR, complexity refers to the extent to which similar problems have similar solutions. Casebase complexity measures proposed are based on the premise that a casebase is simple if similar problems have similar solutions. We observe, however, that such measures are vulnerable to choice of solution side representations, and hence may not be meaningful unless similarities between solution components of cases are shown to corroborate with human judgements. In this paper, we redefine the goal of complexity measurements and explore issues in estimating solution side similarities. A second limitation of earlier approaches is that they critically rely on the choice of one or more parameters. We present two parameter-free complexity measures, and propose a visualization scheme for casebase maintenance. Evaluation over diverse textual casebases show their superiority over earlier measures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  2. 2.
    Mitchell, T.: Machine Learning. Mc Graw Hill International (1997)Google Scholar
  3. 3.
    Lenz, M., Ashley, K.: Papers from the AAAI Workshop. AAAI Press, Menlo Park (1998)Google Scholar
  4. 4.
    Kelly, D., Belkin, N.J.: Reading Time, Scrolling, and Interaction: Exploring Implicit Sources of User Preferences for Relevance Feedback During Interactive Information Retrieval. In: Proc. of the SIGIR (2001)Google Scholar
  5. 5.
    Bergmann, R.: Experience Management: Foundations, Development Methodology, and Internet-Based Applications. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Singh, S.: Prism, Cells and Hypercuboids. Pattern Analysis and Applications 5 (2002)Google Scholar
  7. 7.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3(2003), 993–1022 (2003)MATHGoogle Scholar
  8. 8.
    Lamontagne, L.: Textual CBR Authoring using Case Cohesion. In: TCBR 2006 - Reasoning with Text, Proceedings of the ECCBR 2006 Workshops, pp. 33–43 (2006)Google Scholar
  9. 9.
    Massie, S., Craw, S., Wiratunga, N.: Complexity profiling for informed case-base editing. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp. 325–339. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Vinay, V., Cox, J., Milic-Fralyling, N., Wood, K.: Measuring the Complexity of a Collection of Documents. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 107–118. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Chakraborti, S., Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Watt, S.: A Simple Approach towards Visualizing and Evaluating Complexity of Textual Case Bases. In: Proc. of the ICCBR 2007 Workshops (2007)Google Scholar
  12. 12.
    Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. In: Proceedings of The Twentieth International Joint Conference for Artificial Intelligence, Hyderabad, India, pp. 1606–1611 (2007)Google Scholar
  13. 13.
    Raghunandan, M.A., Wiratunga, N., Chakraborti, S., Massie, S., Khemani, D.: Evaluation Measures for TCBR Systems. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 444–458. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. A. Raghunandan
    • 1
  • Sutanu Chakraborti
    • 1
  • Deepak Khemani
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations