Advertisement

Boosting CBR Agents with Genetic Algorithms

  • Beatriz López
  • Carles Pous
  • Albert Pla
  • Pablo Gay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5650)

Abstract

In this paper we present a distributed system in which several case-based reasoning (CBR) agents cooperate under a boosting schema. Each CBR agent knows part of the cases (a subset of the available attributes) and is trained with a subset of the available cases (so not all the agents know the same cases). The solution of the system is then computed by means of a weighted average of the solutions provided by the CBR agents. Weights are actively learnt by a genetic algorithm. The system has been applied to a breast cancer application domain. The results show that with our methodology we can improve the results obtained with a case base in which attributes have been manually selected by physicians, saving physicians work in future.

Keywords

Distributed CBR genetic algorithms boosting multi-agent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, H., Kim, K.-j., Han, I.: Hybrid genetic algorithms and case-based reasoning systems. In: Zhang, J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp. 922–927. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Birk, A.: Boosting cooperation by evolving trust. Applied Artificial Intelligence 14, 769–784 (2000)CrossRefGoogle Scholar
  3. 3.
    Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evolutionary Computation 4(4) (1996)Google Scholar
  4. 4.
    Cheetham, W.: Case-based reasoning with confidence. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 15–25. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Cunningham, P., Zenobi, G.: Case representation issues for case-based reasoning from ensemble research. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS, vol. 2080, pp. 146–157. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Delany, S.J., Cunningham, P., Coyle, L.: An assessment of case-based reasoning for spam filtering. Artificial Intelligence Review 24(3), 359–378 (2005)CrossRefGoogle Scholar
  7. 7.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006)CrossRefGoogle Scholar
  8. 8.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boostingg. Journal of Computer and System Sciences 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hernández-Lobato, D., Hernández-Lobato, J.M., Ruiz-Torrubiano, R., Valle, Á.: Pruning adaptive boosting ensembles by means of a genetic algorithm. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 322–329. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Jarmulak, J., Craw, S., Crowe, R.: Genetic algorithms to optimise CBR retrieval. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 136–147. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Komathyk, K., Narayanasamy, P.: Trust-based evolutionary game model assisting aodv routing againsts selfishness. Journal of network and computer-application 31(4), 446–471 (2008)CrossRefGoogle Scholar
  12. 12.
    Martin, F.J., Plaza, E., Arcos, J.L.: Knowledge and experience reuse through communication among competent (peer) agents. International Journal of Software Engineering and Knowledge Engineering 9(3), 319–341 (1999)CrossRefGoogle Scholar
  13. 13.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  14. 14.
    Muhlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm: I. continuous parameter optimization. Evolutionary Computation 1(1), 25–49 (1993)CrossRefGoogle Scholar
  15. 15.
    Nagendra-Prasad, M.V., Plaza, E.: Corporate memories as distributed case libraries. In: 10th Banff Knowledge Acquisition for Knowledge-based Systems Workshop, pp. 1–19 (1996)Google Scholar
  16. 16.
    Ontañón, S., Plaza, E.: A bartering approach to improve multiagent learning. In: Int. Conf. Autonomous Agents and Multiagent Systems (AAMAS), pp. 386–393 (2002)Google Scholar
  17. 17.
    Ontañón, S., Plaza, E.: Cooperative multiagent learning. In: Alonso, E., Kazakov, D., Kudenko, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636, pp. 1–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Pohlheim, H.: Genetic and evolutionary algorithm toolbox for use with matlab (1994), http://www.geatbx.com/docu/index.html
  19. 19.
    Pous, C., Gay, P., Pla, A., Brunet, J., Sanz, J., López, B.: Modeling reuse on case-based reasoning with application to breast cancer diagnosis. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 322–332. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Pous, C., Gay, P., Pla, A., López, B.: Collecting methods for medical CBR development and experimentation. In: Schaaf, M. (ed.) Workshop Proceedings of the 9th European Conference on Case-Based Reasoning, CBR in the Health Sciences (ECCBR-HC), Trier, pp. 89–98. Tharax-Verlag (2008)Google Scholar
  21. 21.
    Russell, S., Norvig, P.: Artificial Intelligence: A modern approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)zbMATHGoogle Scholar
  22. 22.
    Santos, E.M.D., Sabourin, R., Maupin, P.: Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion 10(2), 150–162 (2009)CrossRefGoogle Scholar
  23. 23.
    Stahl, A., Gabel, T.: Local similarity measures using evolution programs to learn. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 537–551. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Sun, Z., Finnier, G.R.: Case based reasoning in multiagent systems (ch. 7). In: Intelligent techniques in E-commerce: A case-based reasomning perspective. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Teodorescu, E.I., Petridis, M.: An architecture for multiple heterogeneous case-based reasoning employing agent technologies. In: CIMAS (2008), http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-375/
  26. 26.
    Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble feature selection. Information Fusion 6(1), 83–98 (2005)CrossRefGoogle Scholar
  27. 27.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  28. 28.
    Yalabik, I., Yarman-Vural, F.T., Uçoluk, G., Sehitoglu, O.T.: A pattern classification approach for boosting with genetic algorithms. In: 22nd International Symposium on Computer and Information Sciences, pp. 1–6 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Beatriz López
    • 1
  • Carles Pous
    • 1
  • Albert Pla
    • 1
  • Pablo Gay
    • 1
  1. 1.University of GironaGironaSpain

Personalised recommendations