Advertisement

Nearest Neighbor Search on Moving Object Trajectories in Secondo

  • Ralf Hartmut Güting
  • Angelika Braese
  • Thomas Behr
  • Jianqiu Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5644)

Abstract

In the context of databases storing histories of movement (also called trajectories), we present two query processing operators to compute the k nearest neighbors of a moving query point within a set of moving points. Data moving points are represented as collections of point units (i.e., a time interval together with a linear movement function). The first operator, knearest, processes a stream of units arriving ordered by start time and returns the set of units representing the k nearest neighbors over time. It can be used to process a set of moving point candidates selected by other conditions. The second operator, knearestfilter, operates on a set of units indexed in an R-tree and uses some novel pruning techniques. It returns a set of candidates that can be further processed by knearest to obtain the final answer. These nearest neighbor algorithms are presented within Secondo, a complete DBMS environment for handling moving object histories. For example, candidates and final results can be visualized and animated at the user interface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Düntgen, C., Behr, T., Güting, R.H.: BerlinMOD: A benchmark for moving object databases. The VLDB Journal (online first, 2009)Google Scholar
  2. 2.
    Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Algorithms for nearest neighbor search on moving object trajectories. GeoInformatica 11(2), 159–193 (2007)CrossRefGoogle Scholar
  3. 3.
    Gao, Y., Li, C., Chen, G., Chen, L., Jiang, X., Chen, C.: Efficient k-nearest-neighbor search algorithms for historical moving object trajectories. J. Comput. Sci. Technol. 22(2), 232–244 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Güting, R.H., Behr, T., Xu, J.: Efficient k-nearest neighbor search on moving object trajectories (manuscript in preparation, 2009)Google Scholar
  5. 5.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and quering moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000)CrossRefGoogle Scholar
  6. 6.
    Güting, R.H., de Almeida, V.T., Ansorge, D., Behr, T., Ding, Z., Höse, T., Hoffmann, F., Spiekermann, M., Telle, U.: SECONDO: An extensible DBMS platform for research prototyping and teaching. In: ICDE, pp. 1115–1116. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  7. 7.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ralf Hartmut Güting
    • 1
  • Angelika Braese
    • 1
  • Thomas Behr
    • 1
  • Jianqiu Xu
    • 1
  1. 1.LG Datenbanksysteme für neue Anwendungen Fakultät für Mathematik und InformatikFernuniversität in HagenHagenGermany

Personalised recommendations