Advertisement

Time-Aware Similarity Search: A Metric-Temporal Representation for Complex Data

  • Renato Bueno
  • Daniel S. Kaster
  • Agma Juci Machado Traina
  • Caetano TrainaJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5644)

Abstract

Recent advances in information technology demand handling complex data types, such as images, video, audio, time series and genetic sequences. Distinctly from traditional data (such as numbers, short strings and dates), complex data do not possess the total ordering property, yielding relational comparison operators useless. Even equality comparisons are of little help, as it is very unlikely to have two complex elements exactly equal. Therefore, the similarity among elements has emerged as the most important property for comparisons in such domains, leading to the growing relevance of metric spaces to data search. Regardless of the data domain properties, the systems need to track evolution of data over time. When handling multidimensional data, temporal information is commonly treated as just one or more dimensions. However, metric data do not have the concept of dimensions, thus adding a plain “temporal dimension” does not make sense. In this paper we propose a novel metric-temporal data representation and exploit its properties to compare elements by similarity taking into account time-related evolution. We also present experimental evaluation, which confirms that our technique effectively takes into account the contributions of both the metric and temporal data components. Moreover, the experiments showed that the temporal information always improves the precision of the answer.

Keywords

Fractal Dimension Temporal Information Average Precision Range Query Temporal Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Traina, A.J.M., Traina Jr., C., Bueno, J.M., Marques, P.M.d.A.: The metric histogram: A new and efficient approach for content-based image retrieval. In: VDB, Brisbane, Australia. IFIP Conference Proceedings, vol. 216, pp. 297–311. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  3. 3.
    Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces - index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)CrossRefGoogle Scholar
  4. 4.
    Searcóid, M.Ó.: Metric Spaces. Springer Undergraduate Mathematics Series. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  5. 5.
    Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Commun. ACM 16(4), 230–236 (1973)CrossRefzbMATHGoogle Scholar
  6. 6.
    Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: SODA, Austin, TX, USA, pp. 311–321. ACM, New York (1993)Google Scholar
  7. 7.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB, Athens, Greece, pp. 426–435. Morgan Kaufmann, San Francisco (1997)Google Scholar
  8. 8.
    Traina Jr., C., Traina, A.J.M., Faloutsos, C., Seeger, B.: Fast indexing and visualization of metric datasets using Slim-trees. IEEE Trans. on Knowl. and Data Eng. 14(2), 244–260 (2002)CrossRefGoogle Scholar
  9. 9.
    Zhou, X., Wang, G., Zhou, X., Yu, G.: BM + -tree: A hyperplane-based index method for high-dimensional metric spaces. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 398–409. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Snodgrass, R.T.: The TSQL2 Temporal Query Language. Kluwer Academic Publishers, Dordrecht (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sellis, T.K.: Research issues in spatio-temporal database systems. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 5–11. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: An optimized spatio-temporal access method for predictive queries. In: VLDB, Berlin, Germany, pp. 790–801. Morgan Kaufmann, San Francisco (2003)Google Scholar
  13. 13.
    Kollios, G., Papadopoulos, D., Gunopulos, D., Tsotras, V.J.: Indexing mobile objects using dual transformations. VLDB J. 14(2), 238–256 (2005)CrossRefGoogle Scholar
  14. 14.
    Chen, S., Ooi, B.C., Tan, K.L., Nascimento, M.A.: St\(^{\mbox{2}}\)B-tree: a self-tunable spatio-temporal B\(^{\mbox{+}}\)-tree index for moving objects. In: SIGMOD, Vancouver, BC, Canada, pp. 29–42. ACM, New York (2008)CrossRefGoogle Scholar
  15. 15.
    Zhang, R., Lin, D., Ramamohanarao, K., Bertino, E.: Continuous intersection joins over moving objects. In: ICDE, Cancun, Mexico, pp. 863–872. IEEE, Los Alamitos (2008)Google Scholar
  16. 16.
    Leong Hou, U., Mamoulis, N., Yiu, M.L.: Continuous monitoring of exclusive closest pairs. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 1–19. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Corral, A., Torres, M., Vassilakopoulos, M., Manolopoulos, Y.: Predictive join processing between regions and moving objects. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS, vol. 5207, pp. 46–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD, Paris, France, pp. 623–634. ACM, New York (2004)Google Scholar
  19. 19.
    Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: SIGMOD, Baltimore, Maryland, USA, pp. 634–645. ACM, New York (2005)Google Scholar
  20. 20.
    Papadopoulos, S., Sacharidis, D., Mouratidis, K.: Continuous medoid queries over moving objects. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 38–56. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007)CrossRefGoogle Scholar
  22. 22.
    Zhang, Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitoring over moving objects. IEEE Trans. on Knowl. and Data Eng. 20(9), 1205–1216 (2008)CrossRefGoogle Scholar
  23. 23.
    Schroeder, M.: Fractals, Chaos, Power Laws, 6th edn. W. H. Freeman, New York (1991)zbMATHGoogle Scholar
  24. 24.
    Faloutsos, C., Kamel, I.: Beyond uniformity and independence: Analysis of R-trees using the concept of fractal dimension. In: PODS, Minneapolis, MN, USA, pp. 4–13. ACM, New York (1994)Google Scholar
  25. 25.
    Belussi, A., Faloutsos, C.: Self-spacial join selectivity estimation using fractal concepts. ACM Trans. on Inf. Systems 16(2), 161–201 (1998)CrossRefGoogle Scholar
  26. 26.
    Traina Jr., C., Traina, A.J.M., Faloutsos, C.: Distance exponent: a new concept for selectivity estimation in metric trees. In: ICDE, San Diego, CA, USA, p. 195. IEEE, Los Alamitos (2000)Google Scholar
  27. 27.
    Malcok, M., Aslandogan, Y.A., Yesildirek, A.: Fractal dimension and similarity search in high-dimensional spatial databases. In: IRI, Waikoloa, Hawaii, USA, pp. 380–384. IEEE, Los Alamitos (2006)Google Scholar
  28. 28.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)CrossRefGoogle Scholar
  29. 29.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. Addison-Wesley, Wokingham (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Renato Bueno
    • 1
  • Daniel S. Kaster
    • 2
  • Agma Juci Machado Traina
    • 1
  • Caetano TrainaJr.
    • 1
  1. 1.Department of Computer ScienceUniversity of São Paulo at S~o CarlosBrazil
  2. 2.Department of Computer ScienceUniversity of LondrinaLondrinaBrazil

Personalised recommendations