Spatial Skyline Queries: An Efficient Geometric Algorithm

  • Wanbin Son
  • Mu-Woong Lee
  • Hee-Kap Ahn
  • Seung-won Hwang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5644)


As more data-intensive applications emerge, advanced retrieval semantics, such as ranking and skylines, have attracted attention. Geographic information systems are such an application with massive spatial data. Our goal is to efficiently support skyline queries over massive spatial data. To achieve this goal, we first observe that the best known algorithm VS2, despite its claim, may fail to deliver correct results. In contrast, we present a simple and efficient algorithm that computes the correct results. To validate the effectiveness and efficiency of our algorithm, we provide an extensive empirical comparison of our algorithm and VS2 in several aspects.


  1. 1.
    Kung, H.T., Luccio, F., Preparata, F.: On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery 22(4), 469–476 (1975)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001: Proc. of the 17th International Conference on Data Engineering, p. 421 (2001)Google Scholar
  3. 3.
    Tan, K., Eng, P., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB 2001: Proc. of the 27th International Conference on Very Large Data Bases, pp. 301–310 (2001)Google Scholar
  4. 4.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: SIGMOD 2003: Proc. of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 467–478 (2003)Google Scholar
  5. 5.
    Chomicki, J., Godfery, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE 2007: Proc. of the 23rd International Conference on Data Engineering (2007)Google Scholar
  6. 6.
    Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB 2006: Proc. of the 32nd International Conference on Very Large Data Bases, pp. 751–762 (2006)Google Scholar
  7. 7.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for skyline queries. In: VLDB 2002: Proc. of the 28th International Conference on Very Large Data Bases, pp. 275–286 (2002)Google Scholar
  8. 8.
    Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB 2005: Proc. of the 31st International Conference on Very Large Data Bases, pp. 229–240 (2005)Google Scholar
  9. 9.
    Chan, C.Y., Jagadish, H., Tan, K., Tung, A.K., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Chan, C.Y., Jagadish, H., Tan, K.L., Tung, A.K., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: SIGMOD 2006: Proc. of the 2006 ACM SIGMOD International Conference on Management of Data (2006)Google Scholar
  11. 11.
    Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline operator. In: ICDE 2007: Proc. of the 23rd International Conference on Data Engineering, pp. 86–95 (2007)Google Scholar
  12. 12.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD 1995: Proc. of the 1995 ACM SIGMOD international conference on Management of data, pp. 71–79 (1995)Google Scholar
  13. 13.
    Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A cost model for nearest neighbor search in high-dimensional data space. In: PODS 1997: Proc. of the 16th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp. 78–86 (1997)Google Scholar
  14. 14.
    Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Transactions on Database Systems 30(2), 529–576 (2005)CrossRefGoogle Scholar
  16. 16.
    Huang, X., Jensen, C.S.: In-route skyline querying for location-based services. In: Kwon, Y.-J., Bouju, A., Claramunt, C. (eds.) W2GIS 2004. LNCS, vol. 3428, pp. 120–135. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
  18. 18.
    Qhull code for convex hull, delaunay triangulation, voronoi diagram, and halfspace intersection about a point. World Wide Web electronic publication (May 1995),
  19. 19.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust access method for points and rectangles. In: SIGMOD 1990: Proc. of the 1990 ACM SIGMOD international conference on Management of data, pp. 322–331 (1990)Google Scholar
  20. 20.
    Klee, V.: On the complexity of d-dimensional Voronoi diagrams. Archiv der Mathematik 34, 75–80 (1980)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Chazelle, B.: An optimal convex hull algorithm and new results on cuttings. In: Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pp. 29–38 (1991)Google Scholar
  22. 22.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. II. Discrete Comput. Geom. 4, 387–421 (1989)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discrete Comput. Geom. 6, 423–434 (1991)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wanbin Son
    • 1
  • Mu-Woong Lee
    • 1
  • Hee-Kap Ahn
    • 1
  • Seung-won Hwang
    • 1
  1. 1.Pohang University of Science and TechnologyKorea

Personalised recommendations