Compact Normal Form for Regular Languages as Xor Automata

  • Jean Vuillemin
  • Nicolas Gama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5642)


The only presently known normal form for a regular language \({\mathcal{L}}\in{\mathcal{R}\mathrm{eg}}\) is its Minimal Deterministic Automaton \({\mathrm{MDA}}({\mathcal{L}})\). We show that a regular language is also characterized by a finite dimension \(\dim({\mathcal{L}})\), which is always smaller than the number \(|{\mathrm{MDA}}({\mathcal{L}})|\) of states, and often exponentially so. The dimension is also the minimal number of states of all Nondeterministic Xor Automaton (NXA) which accept the language. NXAs combine the advantages of deterministic automata (normal form, negation, minimization, equivalence of states, accessibility) and of nondeterministic ones (compactness, mirror language). We present an algorithmic construction of the Minimal Non Deterministic Xor Automaton \({\mathrm{MXA}}(\mathcal{L})\), in cubic time from any NXA for \({\mathcal{L}}\in{\mathcal{R}\mathrm{eg}}\). The MXA provides another normal form: \({\mathcal{L}}=\mathcal{L}^{\prime}\Leftrightarrow{\mathrm{MXA}}({\mathcal{L}})={\mathrm{MXA}}(\mathcal{L}^{\prime})\). Our algorithm establishes a missing connection between Brzozowski’s mirror-based minimization method for deterministic automata, and algorithms based on state-equivalence.


Normal Form Formal Power Series Truth Table Regular Language Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monograph. Springer, Heidelberg (1988)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In: Mathematical theory of Automata. MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn (1962)Google Scholar
  3. 3.
    Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages accepted by finite automata with n states. Journal of Automata, Languages and Combinatorics 7, 469–486 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fliess, M.: Matrices de Hankel. J. Math pures et appl. 53, 197–224 (1974)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Huffman, D.A.: The synthesis of sequential switching circuits. The journal of symbolic logic 20, 69–70 (1955)Google Scholar
  6. 6.
    Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on Computing 22(6), 1117–1141 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kameda, T., Weiner, P.: On the state minimalization of nondeterministic finite. Automata. IEEE Transactions on Computers 19(7), 617–627 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Massey, J.: Shift register synthesis and BCH decoding. Trans. on Information Theory IT-15, 122–127 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of weighted automata. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Moore, E.F.: Gedanken-experiments on sequential machines. The Journal of Symbolic Logic 23, 60 (1958)Google Scholar
  11. 11.
    Nerode, A.: Linear automaton transformations. Proceedings of the AMS 9, 541–544 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal 3, 114–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4, 245–270 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    van Zijl, L.: On binary xor-NFAs and succinct descriptions of regular languages. Theoretical Computer Science 328(1-2), 161–170 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    van Zijl, L., Muller, G.: Minimization of unary symmetric difference NFAs. In: Proc. of SAICSIT, pp. 125–134. ACM, New York (2004)Google Scholar
  16. 16.
    Watson, B.W.: A taxonomy of finite automata minimization algorithmes. Computing Science Note 93/44, Eindhoven University of Technology, The Netherlands (1993)Google Scholar
  17. 17.
    Watson, B.W.: Combining two algorithms by Brzozowski. In: Wood, D., Yu, S. (eds.) Proceedings of the Fifth International Conference on Implementing Automata, London, Canada (July 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean Vuillemin
    • 1
  • Nicolas Gama
    • 1
  1. 1.École normale supérieure and INRIAFrance

Personalised recommendations