Advertisement

A Testing Framework for Finite-State Morphology

  • François Barthélemy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5642)

Abstract

This paper describes a unit testing framework for the languages which rely on rational relations to describe Natural Language Morphology. A test is divided into two parts: firstly compute a finite-state machine; secondly inspect this machine to compute its cardinality. The first part involves the finite-state machines to be tested and finite-state machines encoding the inputs of the test. A dependency relation is used to relate tests and the components of the description.

Keywords

Rational Relation Regular Expression Dependency Relation Regular Language Boolean Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications (2003)Google Scholar
  2. 2.
    Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: Openfst: A general and efficient weighted finite-state transducer library. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-Wesley Professional, Reading (2004)Google Scholar
  4. 4.
    Beck, K., Gamma, E.: Test-infected: programmers love writing tests. Java Report 3 (1998)Google Scholar
  5. 5.
    Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computational Linguistics 20(3), 331–378 (1994)Google Scholar
  6. 6.
    Yli-Jyrä, A.M., Koskenniemi, K.: Compiling contextual restrictions on strings into finite-state automata. In: Proceedings of the Eindhoven FASTAR Days 2004, Eindhoven, The Netherlands, September 3-4 (2004)Google Scholar
  7. 7.
    Koskenniemi, K.: Two-level model for morphological analysis. In: IJCAI 1983, Karlsruhe, Germany, pp. 683–685 (1983)Google Scholar
  8. 8.
    Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Orlando (1976)zbMATHGoogle Scholar
  9. 9.
    Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theoretical Computer Science 108, 45–82 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kempe, A., Champarnaud, J.M., Eisner, J.: A note on join and auto-intersection of n-ary rational relations. In: Watson, B., Cleophas, L. (eds.) Proc. Eindhoven FASTAR Days, Eindhoven, Netherlands (2004)Google Scholar
  11. 11.
    Barthélemy, F.: The karamel system and semitic languages: Structured multi-tiered morphology. In: Proceedings of the EACL 2009 Workshop on Computational Approaches to Semitic Languages (2009)Google Scholar
  12. 12.
    Barthélemy, F.: Multi-grain relations. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 243–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François Barthélemy
    • 1
  1. 1.CNAM (Cédric), Paris, France, INRIA (Alpage), RocquencourtFrance

Personalised recommendations