CORAAL – Towards Deep Exploitation of Textual Resources in Life Sciences

  • Vít Nováček
  • Tudor Groza
  • Siegfried Handschuh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5651)


Prominent biomedical literature search tools like ScienceDirect, PubMed Central or MEDLINE allow for efficient retrieval of resources based on key words. Due to vast amounts of data available in life sciences, key word search is not always sufficient, though. One would often welcome more intelligent search for knowledge, i.e., for concepts and their mutual relations. This is, however, still a major challenge, since getting the necessary machine-readable knowledge manually is virtually impossible in large scale, while its automatic extraction is not particularly reliable. We have researched a novel framework actually enabling practical exploitation of automatically extracted knowledge, though. On the top of the framework, we implemented CORAAL, a prototype for knowledge-based biomedical literature search. This paper describes its essential principles, innovative capabilities and current results.


Statement Query PubMed Central Concept Query Chronic Neutrophilic Leukemia Lexical Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bechhofer, S., et al.: Tackling the ontology acquisition bottleneck: An experiment in ontology re-engineering (2003), (April 2008)
  2. 2.
    Nováček, V.: Towards an efficient knowledge-based publication data exploitation: An oncological literature search scenario. Technical Report DERI-TR-2009-03-23, DERI, NUIG (2009),
  3. 3.
    Groza, T., Handschuh, S., Möller, K., Decker, S.: KonneXSALT: First steps towards a semantic claim federation infrastructure. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 80–94. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Manola, F., Miller, E.: RDF Primer (2004), (November 2008)
  5. 5.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 5 (2001)Google Scholar
  6. 6.
    Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of ECAI 2000. IOS Press, Amsterdam (2000)Google Scholar
  7. 7.
    Voelker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema (2004), (Feburary 2006)
  9. 9.
    McGuinness, D.L.: Ontology-enhanced search for primary care medical literature. In: Proceedings of the Medical Concept Representation and Natural Language Processing Conference, pp. 16–19 (1999)Google Scholar
  10. 10.
    Abasolo, J.M., Gómez, M.: Melisa: An ontology-based agent for information retrieval in medicine. In: Proceedings of the First International Workshop on the Semantic Web (SemWeb 2000), pp. 73–82 (2000)Google Scholar
  11. 11.
    Dietze, H.: et al.: Gopubmed: Exploring pubmed with ontological background knowledge. In: Ontologies and Text Mining for Life Sciences, IBFI (2008)Google Scholar
  12. 12.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Decription Logic Handbook: Theory, implementation, and applications. Cambridge University Press, Cambridge (2003)Google Scholar
  13. 13.
    Müller, H.M., Kenny, E.E., Sternberg, P.W.: Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biology 2(11) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vít Nováček
    • 1
  • Tudor Groza
    • 1
  • Siegfried Handschuh
    • 1
  1. 1.Digital Enterprise Research Institute (DERI)National University of Ireland, GalwayGalwayIreland

Personalised recommendations