Mining Fuzzy Ontology for a Web-Based Granular Information Retrieval System

  • Raymond Y. K. Lau
  • Chapmann C. L. Lai
  • Yuefeng Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5589)

Abstract

This paper illustrates the design and development of a fuzzy-ontology based granular IR system to facilitate domain specific search. Based on the notion of information granulation, a novel computational model is developed to estimate the granularity of documents and rank these documents according to the information seekers’ specific granularity requirements. The initial experiments confirm that our granular IR system outperforms a vector space based IR system for domain specific search. Our research work opens the door to the application of granular computing methodology to enhance domain specific search on the Internet.

Keywords

Fuzzy Domain Ontology Fuzzy Subsumption Granular Computing Granular IR Systems Information Retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centered information processing. IEEE Transactions on Fuzzy Systems 16(2), 320–330 (2008)CrossRefGoogle Scholar
  2. 2.
    Lau, R.Y.K.: Context-Sensitive Text Mining and Belief Revision for Intelligent Information Retrieval on the Web. Web Intelligence and Agent Systems An International Journal 1(3-4), 1–22 (2003)CrossRefGoogle Scholar
  3. 3.
    Lau, R.Y.K.: Fuzzy Domain Ontology Discovery for Business Knowledge Management. IEEE Intelligent Informatics Bulletin 8(1), 29–41 (2007)Google Scholar
  4. 4.
    Lau, R.Y.K., Song, D., Li, Y., Cheung, C.H., Hao, J.X.: Towards A Fuzzy Domain Ontology Extraction Method for Adaptive e-Learning. IEEE Transactions on Knowledge and Data Engineering 21(6), 1–14 (2009)CrossRefGoogle Scholar
  5. 5.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: An on-line lexical database. Journal of Lexicography 3(4), 234–244 (1990)Google Scholar
  6. 6.
    Navigli, R., Velardi, P., Gangemi, A.: Ontology learning and its application to automated terminology translation. IEEE Intelligent Systems 18(1), 22–31 (2003)CrossRefGoogle Scholar
  7. 7.
    Resnik, P.: Using information to evaluate semantic similarity in a taxonomy. In: Mellish, C. (ed.) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 448–452. Morgan Kaufmann, San Francisco (1995)Google Scholar
  8. 8.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)MATHGoogle Scholar
  9. 9.
    Voorhees, E., Harman, D.: Overview of the Ninth Text REtrieval Conference (TREC-9). In: Voorhees, E.M., Harman, D.K. (eds.) Proceedings of the ninth Text REtrieval Conference (TREC-9), Gaithersburg, Maryland, November 13–16, pp. 1–14 (2000) NIST, http://trec.nist.gov/pubs/trec9/t9_proceedings.html
  10. 10.
    Yao, J.T.: Information granulation and granular relationships. In: Proceedings of the 2005 IEEE International Conference on Granular Computing, pp. 326–329 (2005)Google Scholar
  11. 11.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raymond Y. K. Lau
    • 1
  • Chapmann C. L. Lai
    • 1
  • Yuefeng Li
    • 2
  1. 1.Department of Information SystemsCity University of Hong KongKowloonHong Kong
  2. 2.School of Information TechnologyQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations