Rough Diamonds in Natural Language Learning

  • David M. W. Powers
  • Richard Leibbrandt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5589)

Abstract

Machine Learning of Natural Language provides a rich environment for exploring supervised and unsupervised learning techniques including soft clustering and rough sets. This keynote presentation will trace the course of our Natural Language Learning as well as some quite intriguing spin-off applications. The focus of the paper will be learning, by both human and computer, reinterpreting our work of the last 30 years [1-12,20-24] in terms of recent developments in Rough Sets.

Keywords

Machine Learning Natural Language Rough Sets Soft Clustering Embodied Conversational Agents Talking Head Thinking Head Teaching Head Evaluation Informedness Markedness DeltaP Information Retrieval Visualization Human Factors Human Machine Interface (HxI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Powers, D.M.W.: Neurolinguistics and Psycholinguistics as a Basis for Computer Acquisition of Natural Language. SIGART 84, 29–34 (1983)CrossRefGoogle Scholar
  2. 2.
    Powers, D.M.W.: Natural Language the Natural Way. Comp. Compacts, 100–109 (1984)Google Scholar
  3. 3.
    Powers, D.M.W., Turk, C.: Machine Learning of Natural Language, Research Monograph. Springer, NewYork (1989)CrossRefMATHGoogle Scholar
  4. 4.
    Powers, D.M.W.: How far can self-organization go? Results in unsupervised language learning. Machine Learning of Natural Language and Ontology, 131–136 (1991)Google Scholar
  5. 5.
    Powers, D.M.W., Reeker, L. (eds.): Proceedings of the AAAI Spring Symposium on Machine Learning of Natural Language and Ontology. DFKI, Kaiserlautern (1991)Google Scholar
  6. 6.
    Powers, D.M.W.: On the Significance of Closed Classes and Boundary Conditions: Experiments in Lexical and Syntactic Learning. In: Daelemans, W., Powers, D.M.W. (eds.) Background and Experiments in Machine Learning of Natural Language: First SHOE Workshop, ITK Proceedings 92/1, Tilburg University NL, pp. 245–266 (1992)Google Scholar
  7. 7.
    Powers, D.M.W.: Unsupervised learning of linguistic structure: an empirical evaluation. Int’l Journal of Corpus Linguistics 2(11), 91–131 (1997)CrossRefGoogle Scholar
  8. 8.
    Powers, D.M.W. (ed.): Proc. Joint Int’l Conf. on New Methods in Language Processing and Computational Natural Language Learning. ACL, Somerset (1998)Google Scholar
  9. 9.
    Powers, D.M.W.: Robot babies: what can they teach us about language acquisition? In: Leather, J., Van Dam, J. (eds.) The Ecology of Language Acquisition, pp. 160–182. Kluwer, Dordrecht (2002)Google Scholar
  10. 10.
    Powers, D.M.W.: Recall and Precision versus the Bookmaker. In: International Conference on Cognitive Science, University of New South Wales, July 2003, pp. 529–534 (2003)Google Scholar
  11. 11.
    Powers, D.W.W.: Evaluation Evaluation. In: The 18th European Conference on Artificial Intelligence (ECAI 2008), Patras, Greece, July 21-25, 2008, pp. 843–844 (2008)Google Scholar
  12. 12.
    Powers, D.M.W., Leibbrandt, R., Pfitzner, D., Luerssen, M., Lewis, T., Abrahamyan, A., Stevens, K.: Language Teaching in a Mixed Reality Games Environmen. In: Proc. 1st International Conference on PErvasive Technologies Related to Assistive Environments (PETRA). ACM International Conference Proceeding, vol. 282, Article 70, p. 7 (2008)Google Scholar
  13. 13.
    Piaget, J.: The Child’s Conception of the World. Routledge and Kegan Paul, London (1928)Google Scholar
  14. 14.
    Vygotsky, L.S.: Thought and Language. MIT Press, Cambridge (1934/1962)Google Scholar
  15. 15.
    Pike, K.L.: Language in Relation to a Unified Theory of the Structure of Human Behaviour. Mouton, The HagueGoogle Scholar
  16. 16.
    Gold, E.M.: Language identification in the limit. Information & Control 10, 447–474 (1967)CrossRefMATHGoogle Scholar
  17. 17.
    Horning, J.J.: A study of grammatical inference. Proceedings of IFIP Congress 71 (1969)Google Scholar
  18. 18.
    Huey, E.B.: The psychology and pedagogy of reading. MIT Press, Cambridge (1908/1968)Google Scholar
  19. 19.
    Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., Amiel-Tison, C.: A precursor of language acquisition in young infants. Cognition 29, 143–178 (1992)CrossRefGoogle Scholar
  20. 20.
    Leibbrandt, R.E., Powers, D.M.W.: Grammatical category induction using lexically-based templates. In: Boston Univ. Conference on Language Development, vol. 32 (2008)Google Scholar
  21. 21.
    Leibbrandt, R.E.: Part-of-speech bootstrapping using lexically-specific frames. Unpublished PhD thesis, Flinders University of South Australia (2009)Google Scholar
  22. 22.
    Pfitzner, D., Leibbrandt, R., Powers, D.M.W.: Characterization and Evaluation of Similarity Measures for Pairs of Clusterings. Knowledge and Information Systems (2008)Google Scholar
  23. 23.
    Pfitzner, D., Treharne, K., Powers, D.M.W.: User Keyword Preference: the Nwords and Rwords Experiments. Int. J. of Internet Protocol Technology 9, 149–158 (2008)CrossRefGoogle Scholar
  24. 24.
    Yang, D., Powers, D.M.W.: Verb similarity on the taxonomy of WordNet. In: The Third International WordNet Conference (GWC 2006), pp. 121–128 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David M. W. Powers
    • 1
  • Richard Leibbrandt
    • 1
  1. 1.AI Lab, School of Computer Science, Engineering and MathematicsFlinders UniversityBedford ParkSouth Australia

Personalised recommendations