Interactive Granular Computing in Rightly Judging Systems

  • Andrzej Jankowski
  • Andrzej Skowron
  • Marcin Szczuka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5589)

Abstract

We discuss some basic issues of interactive computations in the framework of rough-granular computing. Among these issues are hierarchical modeling of granule structures and interactions between granules of different complexity. Interactions between granules on which computations are performed are among the fundamental concepts of Wisdom Technology (Wistech). Wistech is encompassing such areas as interactive computations, multiagent systems, cognitive computation, natural computing, complex adaptive and autonomous systems, or knowledge representation and reasoning about knowledge.

Keywords

Rough sets granular computing rough-granular computing judgment interaction wisdom technology (Wistech) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Dordrecht (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Bazan, J.: Hierarchical classifiers for complex spatio-temporal concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bazan, J.: Rough sets and granular computing in behavioral pattern identification and planning. In: Pedrycz, et al [32], pp. 777–800.Google Scholar
  4. 4.
    Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J.: Automatic planning of treatment of infants with respiratory failure through rough set modeling. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS, vol. 4259, pp. 418–427. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J.: Risk pattern identification in the treatment of infants with respiratory failure through rough set modeling. In: Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J. (eds.) IPMU 2006. E.D.K. (edn.)Paris, vol. 3, pp. 2650–2657 (2006)Google Scholar
  6. 6.
    Bazan, J., Peters, J.F., Skowron, A.: Behavioral pattern identification through rough set modelling. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS, vol. 3642, pp. 688–697. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Bazan, J., Skowron, A.: On-line elimination of non-relevant parts of complex objects in behavioral pattern identification. In: Pal, et al [25], pp. 720–725Google Scholar
  8. 8.
    Bazan, J., Skowron, A., Swiniarski, R.: Rough sets and vague concept approximation: From sample approximation to adaptive learning. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 39–62. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: An experimental evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)CrossRefGoogle Scholar
  10. 10.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques: A Rough Set Approach. Studies in Fuzziness and Soft Computing, vol. 202. Springer, Heidelberg (2006)MATHGoogle Scholar
  11. 11.
    Goldin, D., Smolka, S., Wegner, P.: Interactive Computation: The New Paradigm. Springer, Heidelberg (2006)CrossRefMATHGoogle Scholar
  12. 12.
    Jankowski, A., Skowron, A.: A wistech paradigm for intelligent systems. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 94–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Jankowski, A., Skowron, A.: Logic for artificial intelligence: The Rasiowa-Pawlak school perspective. In: Ehrenfeucht, A., Marek, V., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 106–143. IOS Press, Amsterdam (2008)Google Scholar
  14. 14.
    Jankowski, A., Skowron, A.: Wisdom granular computing. In: Pedrycz et al [32], pp. 329–346Google Scholar
  15. 15.
    Jankowski, A., Skworon, A.: Wisdom technology: A rough-granular approach. In: Festschrift dedicated to Leonard Bolc, pp. 1–40. Springer, Heidelberg (in print, 2009)Google Scholar
  16. 16.
    Leibniz, G.: Dissertio de Arte Combinatoria. Lepzig (1666)Google Scholar
  17. 17.
    Leibniz, G.: New Essays on Human Understanding (1705); Translated and edited by Remnant, P., Bennett, J., Cambridge, UK (1982)Google Scholar
  18. 18.
    Luck, M., McBurney, P., Preist, C.: Agent technology. Enabling next generation computing: A roadmap for agent based computing (2003), http://www.agentlink.org
  19. 19.
    Nguyen, H.S., Jankowski, A., Skowron, A., Stepaniuk, J., Szczuka, M.: Discovery of process models from data and domain knowledge: A rough-granular approach. In: Yao, J.T. (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation, IGI Global, Hershey, PA, pp. 1–30 (2008) (in print)Google Scholar
  20. 20.
    Nguyen, H.S., Skowron, A.: A rough granular computing in discovery of process models from data and domain knowledge. Journal of Chongqing University of Post and Telecommunications 20(3), 341–347 (2008)Google Scholar
  21. 21.
    Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Nguyen, T.T.: Eliciting domain knowledge in handwritten digit recognition. In: Pal, et al [25], pp. 762–767Google Scholar
  23. 23.
    Nguyen, T.T.: Outlier and exception analysis in rough sets and granular computing. In: Pedrycz, et al [32], pp. 823–834Google Scholar
  24. 24.
    Nguyen, T.T., Paddon, C.P.W.D.J., Nguyen, S.H., Nguyen, H.S.: Learning sunspot classification. Fundamenta Informaticae 72(1-3), 295–309 (2006)MATHGoogle Scholar
  25. 25.
    Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.): PReMI 2005. LNCS, vol. 3776. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Berlin (2004)MATHGoogle Scholar
  27. 27.
    Pancerz, K., Suraj, Z.: Discovering concurrent models from data tables with the ROSECON. Fundamenta Informaticae 60(1-4), 251–268 (2004)MATHGoogle Scholar
  28. 28.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)CrossRefMATHGoogle Scholar
  29. 29.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory. In: Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  30. 30.
    Pawlak, Z.: Concurrent versus sequential the rough sets perspective. Bulletin of the EATCS 48, 178–190 (1992)MATHGoogle Scholar
  31. 31.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets; Rough sets: Some extensions; Rough sets and boolean reasoning. Information Sciences 177(1), 3–27, 28–40, 41–73 (2007)CrossRefMATHGoogle Scholar
  32. 32.
    Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)Google Scholar
  33. 33.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50(5), 537–544 (2003)MATHGoogle Scholar
  34. 34.
    Skowron, A.: Rough sets and vague concept. Fundamenta Informaticae 64, 417–431 (2005)MATHGoogle Scholar
  35. 35.
    Skowron, A., Stepaniuk, J.: Rough sets and granular computing: Toward rough-granular computing. In: Pedrycz, et al [32], pp. 425–448Google Scholar
  36. 36.
    Skowron, A., Stepaniuk, J., Peters, J., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)MATHGoogle Scholar
  37. 37.
    Skowron, A., Suraj, Z.: Rough sets and concurrency. Bulletin of the Polish Academy of Sciences 41, 237–254 (1993)MATHGoogle Scholar
  38. 38.
    Skowron, A., Suraj, Z.: Discovery of concurrent data models from experimental tables: A rough set approach. In: Proc. KDD 1995, pp. 288–293. AAAI Press, Menlo Park (1995)Google Scholar
  39. 39.
    Skowron, A., Synak, P.: Complex patterns. Fundamenta Informaticae 60(1-4), 351–366 (2004)MATHGoogle Scholar
  40. 40.
    Skowron, A., Szczuka, M.: Toward interactive computations: A rough-granular approach. In: Koronacki, J., Wierzchon, S., Ras, Z., Kacprzyk, J. (eds.) Commemorative Volume to Honor Ryszard Michalski, pp. 1–20. Springer, Heidelberg (in print, 2009)Google Scholar
  41. 41.
    Sun, R. (ed.): Cognition and Multi-Agent Interaction. From Cognitive Modeling to Social Simulation. Cambridge University Press, Cambridge (2006)Google Scholar
  42. 42.
    Suraj, Z.: Rough set methods for the synthesis and analysis of concurrent processes. In: Polkowski, L., Lin, T., Tsumoto, S. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. Studies in Fuzziness and Soft Computing, vol. 56, pp. 379–488. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  43. 43.
    Thiele, L.P.: The Heart of Judgment: Practical Wisdom, Neuroscience, and Narrative. Cambridge University Press, Edinburgh (2006)CrossRefGoogle Scholar
  44. 44.
    Nguyen, T.T., Skowron, A.: Rough-granular computing in human-centric information processing. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol. 182, pp. 1–30. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  45. 45.
    Wegner, P.: Why interaction is more powerful than algorithms. Communications of the ACM 40, 80–91 (1997)CrossRefGoogle Scholar
  46. 46.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics SMC 3, 28–44 (1973)CrossRefMATHGoogle Scholar
  47. 47.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland Publishing Co., Amsterdam (1979)Google Scholar
  48. 48.
    Zadeh, L.A.: Outline of a computational approach to meaning and knowledge representation based on the concept of a generalized assignment statement. In: Thoma, M., Wyner, A. (eds.) Proceedings of the International Seminar on Artificial Intelligence and Man-Machine System, pp. 198–211. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  49. 49.
    Zadeh, L.A.: A new direction in AI - toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)MATHGoogle Scholar
  50. 50.
    Zadeh, L.A.: Foreword. In: Pal et al [26], pp. IX–XIGoogle Scholar
  51. 51.
    Zadeh, L.A.: Generalized theory of uncertainty (GTU)-principal concepts and ideas. Computational Statistics and Data Analysis 51, 15–46 (2006)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrzej Jankowski
    • 1
  • Andrzej Skowron
    • 2
  • Marcin Szczuka
    • 2
  1. 1.Institute of Decision Processes Support and, AdgaM Solutions Sp. z o.o.WarsawPoland
  2. 2.Institute of MathematicsThe University of WarsawWarsawPoland

Personalised recommendations