Advertisement

Progress in the Development of Automated Theorem Proving for Higher-Order Logic

  • Geoff Sutcliffe
  • Christoph Benzmüller
  • Chad E. Brown
  • Frank Theiss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)

Abstract

The Thousands of Problems for Theorem Provers (TPTP) problem library is the basis of a well established infrastructure supporting research, development, and deployment of first-order Automated Theorem Proving (ATP) systems. Recently, the TPTP has been extended to include problems in higher-order logic, with corresponding infrastructure and resources. This paper describes the practical progress that has been made towards the goal of TPTP support for higher-order ATP systems.

Keywords

Automate Reasoning Proof Assistant Automate Theorem Ramsey Number Problem Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.B.: Resolution in Type Theory. Journal of Symbolic Logic 36(3), 414–432 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andrews, P.B.: Theorem Proving via General Matings. Journal of the ACM 28(2), 193–214 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andrews, P.B.: On Connections and Higher-Order Logic. Journal of Automated Reasoning 5(3), 257–291 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andrews, P.B., Brown, C.E.: TPS: A Hybrid Automatic-Interactive System for Developing Proofs. Journal of Applied Logic 4(4), 367–395 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aspinall, D.: Proof General: A Generic Tool for Proof Development. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 38–42. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Benzmüller, C., Brown, C.E.: A Structured Set of Higher-Order Problems. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS (LNAI), vol. 3603, pp. 66–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher-order Semantics and Extensionality. Journal of Symbolic Logic 69(4), 1027–1088 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benzmüller, C., Kohlhase, M.: LEO - A Higher-Order Theorem Prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 139–143. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Benzmüller, C., Paulson, L.: Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II. In: Benzmüller, C., Brown, C.E., Siekmann, J., Statman, R. (eds.) Reasoning in Simple Type Theory: Festschrift in Honour of Peter B. Andrews on his 70th Birthday. Studies in Logic, Mathematical Logic and Foundations, vol. 17. College Publications (2009)Google Scholar
  10. 10.
    Benzmüller, C., Paulson, L.: Exploring Properties of Propositional Normal Multimodal Logics and Propositional Intuitionistic Logics in Simple Type Theory. Journal of Symbolic Logic (submitted)Google Scholar
  11. 11.
    Benzmüller, C., Paulson, L., Theiss, F., Fietzke, A.: Progress Report on LEO-II - An Automatic Theorem Prover for Higher-Order Logic. In: Schneider, K., Brandt, J. (eds.) Proceedings of the 20th International Conference on Theorem Proving in Higher Order Logics, pp. 33–48 (2007)Google Scholar
  12. 12.
    Benzmüller, C., Paulson, L., Theiss, F., Fietzke, A.: LEO-II - A Cooperative Automatic Theorem Prover for Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 - The Core TPTP Language for Classical Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Combined Reasoning by Automated Cooperation. Journal of Applied Logic 6(3) (2008) (to appear)Google Scholar
  15. 15.
    Bibel, W.: On Matrices with Connections. Journal of the ACM 28(4), 633–645 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bishop, M.: A Breadth-First Strategy for Mating Search. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 359–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Brown, C.E.: Dependently Typed Set Theory. Technical Report SWP-2006-03, Saarland University (2006)Google Scholar
  18. 18.
    Brown, C.E.: Automated Reasoning in Higher-Order Logic: Set Comprehension and Extensionality in Church’s Type Theory. Studies in Logic: Logic and Cognitive Systems, vol. 10. College Publications (2007)Google Scholar
  19. 19.
    Brown, C.E.: M-Set Models. In: Benzmüller, C., Brown, C.E., Siekmann, J., Statman, R. (eds.) Reasoning in Simple Type Theory: Festschrift in Honour of Peter B. Andrews on his 70th Birthday. Studies in Logic, Mathematical Logic and Foundations, vol. 17. College Publications (2009)Google Scholar
  20. 20.
    Garg, D.: Principal-Centric Reasoning in Constructive Authorization Logic. Technical Report CMU-CS-09-120, School of Computer Science, Carnegie Mellon University (2009)Google Scholar
  21. 21.
    Huet, G.: A Unification Algorithm for Typed Lambda-Calculus. Theoretical Computer Science 1(1), 27–57 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hurd, J.: First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In: Archer, M., Di Vito, B., Munoz, C. (eds.) Proceedings of the 1st International Workshop on Design and Application of Strategies/Tactics in Higher Order Logics. NASA Technical Reports, number NASA/CP-2003-212448, pp. 56–68 (2003)Google Scholar
  23. 23.
    Kohlhase, M.: OMDoc - An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Landau, E.: Grundlagen der Analysis. Akademische Verlagsgesellschaft M.B.H. (1930)Google Scholar
  25. 25.
    Miller, D.: A Compact Representation of Proofs. Studia Logica 46(4), 347–370 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nieuwenhuis, R.: The Impact of CASC in the Development of Automated Deduction Systems. AI Communications 15(2-3), 77–78 (2002)Google Scholar
  27. 27.
    Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  28. 28.
    Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Framework for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. 29.
    Raths, T., Otten, J., Kreitz, C.: The ILTP Problem Library for Intuitionistic Logic - Release v1.1. Journal of Automated Reasoning 38(1-2), 261–271 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  31. 31.
    Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)zbMATHGoogle Scholar
  32. 32.
    Siekman, J., Benzmüller, C., Autexier, S.: Computer Supported Mathematics with OMEGA. Journal of Applied Logic 4(4), 533–559 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sutcliffe, G.: Semantic Derivation Verification. International Journal on Artificial Intelligence Tools 15(6), 1053–1070 (2006)CrossRefGoogle Scholar
  34. 34.
    Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 7–23. Springer, Heidelberg (2007)Google Scholar
  35. 35.
    Sutcliffe, G.: The SZS Ontologies for Automated Reasoning Software. In: Sutcliffe, G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the LPAR Workshops: Knowledge Exchange: Automated Provers and Proof Assistants, and The 7th International Workshop on the Implementation of Logics. CEUR Workshop Proceedings, vol. 418, pp. 38–49 (2008)Google Scholar
  36. 36.
    Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP Language for Writing Derivations and Finite Interpretations. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48 (2006)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Trac, S., Puzis, Y., Sutcliffe, G.: An Interactive Derivation Viewer. In: Autexier, S., Benzmüller, C. (eds.) Proceedings of the 7th Workshop on User Interfaces for Theorem Provers, 3rd International Joint Conference on Automated Reasoning. Electronic Notes in Theoretical Computer Science, vol. 174, pp. 109–123 (2006)Google Scholar
  40. 40.
    van Benthem Jutting, L.S.: Checking Landau’s “Grundlagen” in the AUTOMATH System. PhD thesis, Eindhoven University, Eindhoven, The Netherlands (1979)Google Scholar
  41. 41.
    Van Gelder, A., Sutcliffe, G.: Extending the TPTP Language to Higher-Order Logic with Automated Parser Generation. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 156–161. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., Topic, D.: SPASS Version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  43. 43.
    Wiedijk, F.: The Seventeen Provers of the World. LNCS, vol. 3600. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Geoff Sutcliffe
    • 1
  • Christoph Benzmüller
    • 2
  • Chad E. Brown
    • 3
  • Frank Theiss
    • 3
  1. 1.University of MiamiUSA
  2. 2.International UniversityGermany
  3. 3.Saarland UniversityGermany

Personalised recommendations