Interpolation and Symbol Elimination

  • Laura Kovács
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5663)

Abstract

We prove several results related to local proofs, interpolation and superposition calculus and discuss their use in predicate abstraction and invariant generation. Our proofs and results suggest that symbol-eliminating inferences may be an interesting alternative to interpolation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. I, pp. 19–99. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  2. 2.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient Interpolant Generation in Satisfiability Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Craig, W.: Three uses of the Herbrand-Gentzen Theorem in Relating Model Theory and Proof Theory. Journal of Symbolic Logic 22(3), 269–285 (1957)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Deciding Extensions of the Theory of Arrays by Integrating Decision Procedures and Instantiation Strategies. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS, vol. 4160, pp. 177–189. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision Procedures for Extensions of the Theory of Arrays. Ann. Math. Artif. Intell. 50(3-4), 231–254 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gulwani, S., Musuvathi, M.: Cover Algorithms and Their Combination. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 193–207. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from Proofs. In: Proc. of POPL, pp. 232–244 (2004)Google Scholar
  8. 8.
    Jhala, R., McMillan, K.L.: A Practical and Complete Approach to Predicate Refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kamin, S., Lévy, J.-J.: Two Generalizations of the Recursive Path Ordering (January 1980) (unpublished)Google Scholar
  10. 10.
    Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for Data Structures. In: Young, M., Devanbu, P.T. (eds.) SIGSOFT FSE, pp. 105–116. ACM, New York (2006)Google Scholar
  11. 11.
    Knuth, D., Bendix, P.: Simple Word Problems in Universal Algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)CrossRefGoogle Scholar
  12. 12.
    Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Kovacs, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theorem Prover. In: Proc. of FASE (to appear, 2009)Google Scholar
  14. 14.
    Ludwig, M., Waldmann, U.: An Extension of the Knuth-Bendix Ordering with LPO-Like Properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 348–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lyndon, R.C.: An Interpolation Theorem in the Predicate Calculus. Pacific Journal of Mathematics 9, 129–142 (1959)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    McMillan, K.L.: An Interpolating Theorem Prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Motohashi, N.: Equality and Lyndon’s Interpolation Theorem. Journal of Symbolic Logic 49(1), 123–128 (1984)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I, pp. 371–443. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  21. 21.
    Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)MATHGoogle Scholar
  22. 22.
    Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint Solving for Interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 235–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.: A Decision Procedure for an Extensional Theory of Arrays. In: LICS (2001)Google Scholar
  25. 25.
    Yorsh, G., Musuvathi, M.: A Combination Method for Generating Interpolants. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 353–368. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Laura Kovács
    • 1
  • Andrei Voronkov
    • 2
  1. 1.EPFLSwitzerland
  2. 2.University of ManchesterUK

Personalised recommendations