Finding Errors of Hybrid Systems by Optimising an Abstraction-Based Quality Estimate

  • Stefan Ratschan
  • Jan-Georg Smaus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5668)


We present an algorithm for falsifying safety properties of hybrid systems, i.e., for finding a trajectory to an unsafe state. The approach is to approximate how close a point is to being an initial point of an error trajectory using a real-valued quality function, and then to use numerical optimisation to search for an optimum of this function. The function is computed by running simulations, where information coming from abstractions computed by a verification algorithm is exploited to determine whether a simulation looks promising and should be continued or cancelled. This information becomes more reliable as the abstraction becomes more refined. We thus interleave falsification and verification attempts.


Model Check Hybrid System Abstract State Quality Estimate Find Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of hybrid systems. Trans. on Embedded Computing Sys. 5(1), 152–199 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Bemporad, A., Bicchi, A., Buttazzo, G. (eds.): HSCC 2007. LNCS, vol. 4416. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis of continuous and hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 142–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bhatia, A., Frazzoli, E.: Sampling-based resolution-complete algorithms for safety falsification of linear systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 606–609. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cheng, P., Kuma, V.: Sampling-based falsification and verification of controllers for continuous dynamic systems. Int. J. of Robotics Research 27(11-12), 1232–1245 (2008)CrossRefGoogle Scholar
  6. 6.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. of Foundations of Comp. Sci. 14(4), 583–604 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Damm, W., Hermanns, H. (eds.): CAV 2007: 19th Int. Conf. on Computer Aided Verification. LNCS, vol. 4590. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, et al. (eds.) [2], pp. 174–189Google Scholar
  10. 10.
    Girard, A., Pappas, G.: Verification using simulation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new algorithm for property checking. In: Young, M., Devanbu, P.T. (eds.) SIGSOFT 2006/FSE-14: Proc. of the 14th ACM SIGSOFT Int. Symp. on Foundations of Software Engineering, pp. 117–127. ACM, New York (2006)CrossRefGoogle Scholar
  12. 12.
    Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test generation and coverage for hybrid systems. In: Bemporad, et al. (eds.) [2], pp. 329–242Google Scholar
  13. 13.
    Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review 45(3), 385–482 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lerda, F., Kapinski, J., Maka, H., Clarke, E., Krogh, B.: Model checking in-the-loop: Finding counterexamples by systematic simulation. In: American Control Conf. (2008)Google Scholar
  15. 15.
    Nahhal, T., Dang, T.: Test coverage for continuous and hybrid systems. In: Damm, Hermanns (eds.) [8], pp. 449–462Google Scholar
  16. 16.
    Park, T., Barton, P.I.: State event location in differential-algebraic models. ACM Trans. Model. Comput. Simul. 6(2), 137–165 (1996)CrossRefMATHGoogle Scholar
  17. 17.
    Paula, F.M.D., Hu, A.J.: An effective guidance strategy for abstraction-guided simulation. In: DAC 2007: 44th Annual Conf. on Design Automation, pp. 63–68. ACM, New York (2007)Google Scholar
  18. 18.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to falsification. In: Damm, Hermanns (eds.) [8], pp. 463–476Google Scholar
  19. 19.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Trans. in Embedded Computing Systems 6(1) (2007)Google Scholar
  20. 20.
    Ratschan, S., Smaus, J.-G.: Finding errors of hybrid systems by optimising an abstraction-based quality estimate. Technical Report 51, AVACS (2009),
  21. 21.
    Sewell, G.: The Numerical Solution of Ordinary and Partial Differential Equations. Academic Press, London (1988)MATHGoogle Scholar
  22. 22.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefan Ratschan
    • 1
  • Jan-Georg Smaus
    • 2
  1. 1.Academy of Sciences of theCzech Republic
  2. 2.University of FreiburgGermany

Personalised recommendations