Advertisement

Towards Semantic-based RSS Merging

  • F. Getahun
  • J. Tekli
  • M. Viviani
  • R. Chbeir
  • K. Yetongnon
Part of the Studies in Computational Intelligence book series (SCI, volume 226)

Abstract

Merging information can be of key importance in several XML-based applications. For instance, merging the RSS news from different sources and providers can be beneficial for end-users (journalists, economists, etc.) in various scenarios. In this work, we address this issue and mainly explore the relatedness relationships between RSS entities/elements. To validate our approach, we also provide a set of experimental tests showing satisfactory results.

Keywords

Semantic Similarity Simple Element Semantic Neighborhood Document Object Model Really Simple Syndication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer Science 337(1-3), 217–239 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic relatedness. Computational Linguistics 32(1), 13–47 (2006)CrossRefGoogle Scholar
  3. 3.
    Chawathe, S.S.: Comparing hierarchical data in external memory. In: VLDB 1999: Proceedings of the 25th International Conference on Very Large Data Bases, pp. 90–101. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  4. 4.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Flesca, S., Manco, G., Masciari, E., Pontieri, L.: Fast detection of xml structural similarity. IEEE Transactions on Knowledge and Data Engineering 17(2), 160–175 (2005) (Student Member-Andrea Pugliese)CrossRefGoogle Scholar
  6. 6.
    Getahun, F., Tekli, J., Atnafu, S., Chbeir, R.: Towards efficient horizontal multimedia database fragmentation using semantic-based predicates implication. In: XXII Simposio Brasileiro de Banco de Dados (SBBD 2007), Joao Pessoa, Brazil, October 15-19, pp. 68–82 (2007)Google Scholar
  7. 7.
    Grabs, T., Schek, H.-J.: Generating Vector Spaces On-the-fly for Flexible XML Retrieval. In: Proceedings of the ACM SIGIR Workshop on XML and Information Retrieval, Tampere, Finland, pp. 4–13. ACM Press, New York (2002)Google Scholar
  8. 8.
    Kade, A.M., Heuser, C.A.: Matching XML documents in highly dynamic applications. In: Proceeding of the eighth ACM symposium on Document engineering, Sao Paulo, Brazil, pp. 191–198 (2008) ISBN:978-1-60558-081-4Google Scholar
  9. 9.
    La Fontaine, R.: Merging XML files: A new approach providing intelligent merge of XML data sets. In: Proceedings of XML Europe 2002 (2002)Google Scholar
  10. 10.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of the 15th International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  11. 11.
    McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  12. 12.
    Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In: Proceedings of the Fifth International Workshop on the Web and Databases, WebDB 2002, pp. 61–66. University of California (2002)Google Scholar
  13. 13.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)Google Scholar
  14. 14.
    Princeton University Cognitive Science Laboratory. WordNet: a lexical database for the English language, http://wordnet.princeton.edu/
  15. 15.
    Resnik, P.: Semantic Similarity in a Taxonomy: An Information-based Measure and its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research 11, 95–130 (1999)zbMATHGoogle Scholar
  16. 16.
    Richardson, R., Smeaton, A.F.: Using wordnet in a knowledge-based approach to information retrieval. Technical Report CA-0395, School of Computer Applications, Trinity College, Dublin, Ireland (1995)Google Scholar
  17. 17.
    RSS Advisory Board. RSS 2.0 Specification, http://www.rssboard.org/
  18. 18.
    Tekli, J., Chbeir, R., Ytongnon, K.: A hybrid approach for xml similarity. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plasil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 783–795. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Wu, Z., Palmer, M.: V Verbs semantics and lexical selection. In: Proceedings of the 32nd annual meeting on Association for Computational Linguistics, Morristown, NJ, USA, pp. 133–138. Association for Computational Linguistics (1994)Google Scholar
  20. 20.
    WWW Consortium. The Document Object Model, http://www.w3.org/DOM

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • F. Getahun
    • 1
  • J. Tekli
    • 1
  • M. Viviani
    • 1
  • R. Chbeir
    • 1
  • K. Yetongnon
    • 1
  1. 1.Laboratoire Electronique, Informatique et Image (LE2I) - UMR-CNRSUniversité de Bourgogne - Sciences et Techniques MirandeDijon CedexFrance

Personalised recommendations