Advertisement

When Are Timed Automata Determinizable?

  • Christel Baier
  • Nathalie Bertrand
  • Patricia Bouyer
  • Thomas Brihaye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5556)

Abstract

In this paper, we propose an abstract procedure which, given a timed automaton, produces a language-equivalent deterministic infinite timed tree. We prove that under a certain boundedness condition, the infinite timed tree can be reduced into a classical deterministic timed automaton. The boundedness condition is satisfied by several subclasses of timed automata, some of them were known to be determinizable (event-clock timed automata, automata with integer resets), but some others were not. We prove for instance that strongly non-Zeno timed automata can be determinized. As a corollary of those constructions, we get for those classes the decidability of the universality and of the inclusion problems, and compute their complexities (the inclusion problem is for instance EXPSPACE-complete for strongly non-Zeno timed automata).

Keywords

Inclusion Problem Boundedness Condition Time Automaton Single Clock Clock Valuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, S., Ouaknine, J., Worrell, J.: Undecidability of universality for timed automata with minimal resources. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 25–37. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proc. IFAC Symposium on System Structure and Control, pp. 469–474. Elsevier Science, Amsterdam (1998)Google Scholar
  5. 5.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable? Research Report LSV-09-08, Laboratoire Spécification & Vérification, ENS de Cachan, France (2009)Google Scholar
  6. 6.
    Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: Closing a decidability gap. In: Proc. 19th Annual Symposium on Logic in Computer Science (LICS 2004), pp. 54–63. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  8. 8.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1:8) (2007)Google Scholar
  9. 9.
    Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed automata with integer resets: Language inclusion and expressiveness. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christel Baier
    • 1
  • Nathalie Bertrand
    • 2
  • Patricia Bouyer
    • 3
  • Thomas Brihaye
    • 4
  1. 1.Technische Universität DresdenGermany
  2. 2.INRIA Rennes Bretagne AtlantiqueFrance
  3. 3.LSV, CNRS & ENS CachanFrance
  4. 4.Université de MonsBelgium

Personalised recommendations