When Are Timed Automata Determinizable?

  • Christel Baier
  • Nathalie Bertrand
  • Patricia Bouyer
  • Thomas Brihaye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5556)

Abstract

In this paper, we propose an abstract procedure which, given a timed automaton, produces a language-equivalent deterministic infinite timed tree. We prove that under a certain boundedness condition, the infinite timed tree can be reduced into a classical deterministic timed automaton. The boundedness condition is satisfied by several subclasses of timed automata, some of them were known to be determinizable (event-clock timed automata, automata with integer resets), but some others were not. We prove for instance that strongly non-Zeno timed automata can be determinized. As a corollary of those constructions, we get for those classes the decidability of the universality and of the inclusion problems, and compute their complexities (the inclusion problem is for instance EXPSPACE-complete for strongly non-Zeno timed automata).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, S., Ouaknine, J., Worrell, J.: Undecidability of universality for timed automata with minimal resources. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 25–37. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proc. IFAC Symposium on System Structure and Control, pp. 469–474. Elsevier Science, Amsterdam (1998)Google Scholar
  5. 5.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable? Research Report LSV-09-08, Laboratoire Spécification & Vérification, ENS de Cachan, France (2009)Google Scholar
  6. 6.
    Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: Closing a decidability gap. In: Proc. 19th Annual Symposium on Logic in Computer Science (LICS 2004), pp. 54–63. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  8. 8.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1:8) (2007)Google Scholar
  9. 9.
    Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed automata with integer resets: Language inclusion and expressiveness. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christel Baier
    • 1
  • Nathalie Bertrand
    • 2
  • Patricia Bouyer
    • 3
  • Thomas Brihaye
    • 4
  1. 1.Technische Universität DresdenGermany
  2. 2.INRIA Rennes Bretagne AtlantiqueFrance
  3. 3.LSV, CNRS & ENS CachanFrance
  4. 4.Université de MonsBelgium

Personalised recommendations