Efficient Methods for Selfish Network Design

  • Dimitris Fotakis
  • Alexis C. Kaporis
  • Paul G. Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5556)


Intuitively, Braess’s paradox states that destroying a part of a network may improve the common latency of selfish flows at Nash equilibrium. Such a paradox is a pervasive phenomenon in real-world networks. Any administrator, who wants to improve equilibrium delays in selfish networks, is facing some basic questions: (i) Is the network paradox-ridden? (ii) How can we delete some edges to optimize equilibrium flow delays? (iii) How can we modify edge latencies to optimize equilibrium flow delays?

Unfortunately, such questions lead to NP-hard problems in general. In this work, we impose some natural restrictions on our networks, e.g. we assume strictly increasing linear latencies. Our target is to formulate efficient algorithms for the three questions above. We manage to provide:

  • A polynomial-time algorithm that decides if a network is paradox-ridden, when latencies are linear and strictly increasing.

  • A reduction of the problem of deciding if a network with arbitrary linear latencies is paradox-ridden to the problem of generating all optimal basic feasible solutions of a Linear Program that describes the optimal traffic allocations to the edges with constant latency.

  • An algorithm for finding a subnetwork that is almost optimal wrt equilibrium latency. Our algorithm is subexponential when the number of paths is polynomial and each path is of polylogarithmic length.

  • A polynomial-time algorithm for the problem of finding the best subnetwork, which outperforms any known approximation algorithm for the case of strictly increasing linear latencies.

  • A polynomial-time method that turns the optimal flow into a Nash flow by deleting the edges not used by the optimal flow, and performing minimal modifications to the latencies of the remaining ones.

Our results provide a deeper understanding of the computational complexity of recognizing the Braess’s paradox most severe manifestations, and our techniques show novel ways of using the probabilistic method and of exploiting convex separable quadratic programs.


Nash Equilibrium Latency Function Congestion Game Total Latency Linear Latency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Spencer, J.: The Probabilistic Method. John Wiley, Chichester (1992)zbMATHGoogle Scholar
  2. 2.
    Althöfer, I.: On Sparse Approximations to Randomized Strategies and Convex Combinations. Linear Algebra and Applications 99, 339–355 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Azar, Y., Epstein, A.: The Hardness of Network Design for Unsplittable Flow with Selfish Users. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 41–54. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bonifaci, V., Harks, T., Schäfer, G.: Stackelberg Routing in Arbitrary Networks. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 239–250. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Braess, D.: Über ein Paradox aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Taxes for Linear Atomic Congestion Games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 184–195. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cole, R., Dodis, Y., Roughgarden, T.: How Much Can Taxes Help Selfish Routing? J. Comput. System Sci. 72(3), 444–467 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fleischer, L., Jain, K., Mahdian, M.: Tolls for Heterogeneous Selfish Users in Multicommodity Networks and Generalized Congestion Games. In: Proc. of FOCS 2004, pp. 277–285 (2004)Google Scholar
  9. 9.
    Fotakis, D.: Stackelberg Strategies for Atomic Congestion Games. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 299–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fotakis, D., Spirakis, P.: Cost-Balancing Tolls for Atomic Network Congestion Games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 179–190. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Hochbaum, D.S., Shanthikumar, J.G.: Convex Separable Optimization is not Much Harder than Linear Optimization. J. ACM 37(4), 843–862 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association 58(301), 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kaporis, A.C., Spirakis, P.G.: The Price of Optimum in Stackelberg Games on Arbitrary Single Commodity Networks and Latency Functions. In: Proc. of SPAA 2006, pp. 19–28 (2006)Google Scholar
  14. 14.
    Karakostas, G., Kolliopoulos, S.: Edge Pricing of Multicommodity Networks for Heterogeneous Selfish Users. In: Proc. of FOCS 2004, pp. 268–276 (2004)Google Scholar
  15. 15.
    Karakostas, G., Kolliopoulos, S.: Stackelberg Strategies for Selfish Routing in General Multicommodity Networks. Algorithmica 53(1), 132–153 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving Network Optima Using Stackelberg Routing Strategies. IEEE/ACM Trans. on Networking 5(1), 161–173 (1997)CrossRefGoogle Scholar
  17. 17.
    Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Lin, H., Roughgarden, T., Tardos, É.: A Stronger Bound on Braess’s Paradox. In: Proc. of SODA 2004, pp. 340–341 (2004)Google Scholar
  19. 19.
    Lin, H., Roughgarden, T., Tardos, É., Walkover, A.: Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproximability. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 497–512. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Lipton, R.J., Markakis, E., Mehta, A.: Playing Large Games Using Simple Strategies. In: Proc. of EC 2003, pp. 36–41 (2003)Google Scholar
  21. 21.
    Lipton, R.J., Young, N.E.: Simple Strategies for Large Zero-Sum Games with Applications to Complexity Theory. In: Proc. of STOC 1994, pp. 734–740 (1994)Google Scholar
  22. 22.
    Mangasarian, O.L.: Uniqueness of Solution on Linear Programming. Linear Algebra and its Applications 25, 151–162 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Milchtaich, I.: Network Topology and the Efficiency of Equilibrium. Games and Economic Behavior 57, 321–346 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Minoux, M.: A Polynomial Algorithm for Minimum Quadratic Cost Flow Problems. European J. of Operational Research 18(3), 377–387 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Roughdarden, T., Tardos, É.: How Bad is Selfish Routing? J. ACM 49(2), 236–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology. In: Proc. of STOC 2002, pp. 428–437 (2002)Google Scholar
  27. 27.
    Roughgarden, T.: Stackelberg Scheduling Strategies. SIAM J. on Computing 33(2), 332–350 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  29. 29.
    Roughgarden, T.: On the Severity of Braess’s Paradox: Designing Networks for Selfish Users is Hard. J. Comput. System Sci. 72(5), 922–953 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Valiant, G., Roughgarden, T.: Braess’s Paradox in Large Random Graphs. In: Proc. of EC 2006, pp. 296–305 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dimitris Fotakis
    • 1
  • Alexis C. Kaporis
    • 2
    • 3
  • Paul G. Spirakis
    • 2
    • 3
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of Computer Engineering and InformaticsUniversity of PatrasPatrasGreece
  3. 3.Research Academic Computer Technology InstitutePatrasGreece

Personalised recommendations