LTL Path Checking Is Efficiently Parallelizable

  • Lars Kuhtz
  • Bernd Finkbeiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5556)

Abstract

We present an AC1(logDCFL) algorithm for checking LTL formulas over finite paths, thus establishing that the problem can be efficiently parallelized. Our construction provides a foundation for the parallelization of various applications in monitoring, testing, and verification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armoni, R., Korchemny, D., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: Deterministic Dynamic Monitors for Linear-Time Assertions. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 163–177. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M., Pasareanu, C., Rosu, G., Sen, K., Visser, W., Washington, R.: Combining test case generation and runtime verification. Theoretical Computer Science 336(2-3), 209–234 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: On monotone planar circuits. In: Proceedings of the 14th Annual IEEE Conference on Computational Complexity (COCO 1999), Washington, DC, USA, pp. 24–31. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  4. 4.
    Boule, M., Zilic, Z.: Automata-based assertion-checker synthesis of PSL properties. ACM Transactions on Design Automation of Electronic Systems (TODAES) 13(1) (2008)Google Scholar
  5. 5.
    Chakraborty, T., Datta, S.: One-input-face MPCVP is hard for L, but in LogDCFL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 57–68. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Dahan, A., Geist, D., Gluhovsky, L., Pidan, D., Shapir, G., Wolfsthal, Y., Benalycherif, L., Kamdem, R., Lahbib, Y.: Combining system level modeling with assertion based verification. In: ISQED 2005: Proceedings of the 6th International Symposium on Quality of Electronic Design, Washington, DC, USA, pp. 310–315. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  7. 7.
    Delcher, A.L., Kosaraju, S.R.: An NC algorithm for evaluating monotone planar circuits. SIAM J. Comput. 24(2), 369–375 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Inf. Comput. 174(1), 84–103 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dymond, P.W., Cook, S.A.: Complexity theory of parallel time and hardware. Information and Computation 80(3), 205–226 (1989)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Finkbeiner, B., Sipma, H.B.: Checking finite traces using alternating automata. Formal Methods in System Design 24, 101–127 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Goldschlager, L.M.: A space efficient algorithm for the monotone planar circuit value problem. Inf. Process. Lett. 10(1), 25–27 (1980)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Havelund, K., Roşu, G.: Efficient monitoring of safety properties. Software Tools for Technology Transfer (2004)Google Scholar
  13. 13.
    IEEE Std 1850-2007. Standard for Property Specification Language (PSL). IEEE, New York (2007)Google Scholar
  14. 14.
    Jiang, T., Ravikumar, B.: A note on the space complexity of some decision problems for finite automata. Information Processing Letters 40, 25–31 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Rao Kosaraju, S.: On parallel evaluation of classes of circuits. In: Veni Madhavan, C.E., Nori, K.V. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 232–237. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  16. 16.
    Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Proceedings of the Conference on Logic of Programs, London, UK, pp. 196–218. Springer, London (1985)CrossRefGoogle Scholar
  17. 17.
    Limaye, N., Mahajan, M., Sarma, J.M.N.: Evaluating monotone circuits on cylinders, planes and tori. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 660–671. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Markey, N., Schnoebelen, P.: Model checking a path (preliminary report). In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Petersen, H.: Decision problems for generalized regular expressions. In: Proc. 2nd International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures, London (Ontario), pp. 22–29 (2000)Google Scholar
  20. 20.
    Petersen, H.: The membership problem for regular expressions with intersection is complete in LOGCFL. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 513–522. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Yang, H.: An NC algorithm for the general planar monotone circuit value problem. In: Proc. 3rd IEEE Symposium on Parallel and Distributed Processing, pp. 196–203 (1991)Google Scholar
  22. 22.
    Younes, H.L.S., Simmons, R.G.: Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 223. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lars Kuhtz
    • 1
  • Bernd Finkbeiner
    • 1
  1. 1.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations