Counting Subgraphs via Homomorphisms

  • Omid Amini
  • Fedor V. Fomin
  • Saket Saurabh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)


Counting homomorphisms between graphs has applications in variety of areas, including extremal graph theory, properties of graph products, partition functions in statistical physics and property testing of large graphs. In this work we show a new application of counting graph homomorphisms to the areas of exact and parameterized algorithms.

We introduce a generic approach for counting subgraphs in a graph. The main idea is to relate counting subgraphs to counting graph homomorphisms. This approach provides new algorithms and unifies several well known results in algorithms and combinatorics including the recent algorithm of Björklund, Husfeldt and Koivisto for computing the chromatic polynomial, the classical algorithm of Kohn, Gottlieb, Kohn, and Karp for counting Hamiltonian cycles, Ryser’s formula for counting perfect matchings of a bipartite graph, and color coding based algorithms of Alon, Yuster, and Zwick.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1995)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Babai, L.: Moderately exponential bound for graph isomorphism. In: Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 34–50. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  3. 3.
    Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classification of finite simple groups. In: FOCS, pp. 162–171 (1983)Google Scholar
  4. 4.
    Bax, E.T.: Algorithms to count paths and cycles. Inform. Process. Lett. 52, 249–252 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beals, R., Chang, R., Gasarch, W.I., Torán, J.: On finding the number of graph automorphisms. Chicago J. Theor. Comput. Sci. (1999)Google Scholar
  6. 6.
    Bernardi, O., Noy, M., Welsh, D.: On the growth rate of minor-closed classes of graphs,
  7. 7.
    Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number of perfect matchings. Algorithmica 52(2), 226–249 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: FOCS, pp. 575–582 (2006)Google Scholar
  9. 9.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: STOC, pp. 67–74 (2007)Google Scholar
  10. 10.
    Blankenship, R., Oporowski, B.: Book embeddings of graphs and minor-closed classes. In: Proceedings of the 32nd Southeastern International Conference on Combinatorics, Graph Theory and ComputingGoogle Scholar
  11. 11.
    Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Counting graph homomorphisms. In: Topics in discrete mathematics. Algorithms Combin., vol. 26, pp. 315–371. Springer, Berlin (2006)CrossRefGoogle Scholar
  12. 12.
    Cygan, M., Pilipczuk, M.: Faster exact bandwidth. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 101–109. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from the other side. Theoret. Comput. Sci. 329, 315–323 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Díaz, J., Serna, M.J., Thilikos, D.M.: Counting h-colorings of partial k-trees. Theor. Comput. Sci. 281, 291–309 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. Random Structures Algorithms 17, 260–289 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Feige, U.: Coping with the NP-Hardness of the Graph Bandwidth Problem. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 10–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Feige, U., Hajiaghayi, M.T., Lee, J.R.: Improved approximation algorithms for minimum-weight vertex separators. In: STOC, pp. 563–572 (2005)Google Scholar
  18. 18.
    Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54, Art. 1, 24 (electronic) (2007)Google Scholar
  19. 19.
    Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theory Ser. B 48, 92–110 (1990)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford Lecture Series in Mathematics and its Applications, vol. 28. Oxford University Press, Oxford (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1, 49–51 (1982)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman problem. In: Proceedings of the annual ACM conference, pp. 294–300 (1977)Google Scholar
  23. 23.
    Koivisto, M.: An O(2n) algorithm for graph coloring and other partitioning problems via inclusion-exclusion. In: FOCS, pp. 583–590 (2006)Google Scholar
  24. 24.
    Lovász, L.: Operations with structures. Acta Math. Hung. 18, 321–328 (1967)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Malitz, S.M.: Genus g graphs have pagenumber \(O(\sqrt{g})\). J. Algorithms 17, 85–109 (1994)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS, pp. 182–191 (1995)Google Scholar
  27. 27.
    Norine, S., Seymour, P.D., Thomas, R., Wollan, P.: Proper minor-closed families are small. J. Comb. Theory, Ser. B 96, 754–757 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ryser, H.J.: Combinatorial mathematics. The Carus Mathematical Monographs, vol. 14. The Mathematical Association of America (1963)Google Scholar
  29. 29.
    Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Omid Amini
    • 1
  • Fedor V. Fomin
    • 2
  • Saket Saurabh
    • 2
  1. 1.CNRS-DMA, École Normale SupérieureParisFrance
  2. 2.Department of InformaticsUniversity of BergenNorway

Personalised recommendations