Bounds on the Size of Small Depth Circuits for Approximating Majority

  • Kazuyuki Amano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

In this paper, we show that for every constant 0 < ε< 1/2 and for every constant d ≥ 2, the minimum size of a depth d Boolean circuit that ε-approximates Majority function on n variables is exp(Θ(n1/(2d − 2))). The lower bound for every d ≥ 2 and the upper bound for d = 2 have been previously shown by O’Donnell and Wimmer [ICALP’07], and the contribution of this paper is to give a matching upper bound for d ≥ 3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M.: \(\Sigma_1^1\)-formulae on Finite Structures. Annals of Pure and Applied Logic 24, 1–48 (1983)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ajtai, M.: Approximate Counting with Uniform Constant-Depth Circuits. Advances in Computational Complexity Theory, pp. 1–20. Amer. Math. Soc., Providence (1993)MATHGoogle Scholar
  3. 3.
    Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c logn Parallel Steps. Combinatorica 3, 1–19 (1983)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boppana, R.: The Average Sensitivity of Bounded-Depth Circuits. Inf. Proc. Lett. 63(5), 257–261 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Håstad, J.: Almost Optimal Lower Bounds for Small Depth Circuits. In: Proc. of 18th ACM Symposium on Theory of Computing (STOC 1986), pp. 6–20 (1986)Google Scholar
  6. 6.
    Klawe, M., Paul, W.J., Pippenger, N., Yannakakis, M.: On Monotone Formulae with Restricted Depth. In: Proc. of 16th ACM Symposium on Theory of Computing (STOC 1984), pp. 480–487 (1984)Google Scholar
  7. 7.
    O’Donnell, R., Wimmer, K.: Approximation by DNF: Examples and Counterexamples. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 195–206. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Valiant, L.G.: Short Monotone Formulae for the Majority Function. J. Algorithms 5(3), 363–366 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Viola, E.: On Approximate Majority and Probabilistic Time. In: Proc. of 22nd IEEE Conference on Computational Complexity (CCC 2007), pp. 155–168 (2007)Google Scholar
  10. 10.
    Wegener, I.: The Complexity of Boolean Functions. Willey-Teubner (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kazuyuki Amano
    • 1
  1. 1.Dept of Comput SciGunma Univ.GunmaJapan

Personalised recommendations