A graph is chordal if it does not contain any induced cycle of size greater than three. An alternative characterization of chordal graphs is via a perfect elimination ordering, which is an ordering of the vertices such that, for each vertex v, the neighbors of v that occur later than v in the ordering form a clique. Akcoglu et al [1] define an extension of chordal graphs whereby the neighbors of v that occur later than v in the elimination order have at most k independent vertices. We refer to such graphs as sequentially k-independent graphs. We study properties of such families of graphs, and we show that several natural classes of graphs are sequentially k-independent for small k. In particular, any intersection graph of translates of a convex object in a two dimensional plane is a sequentially 3-independent graph; furthermore, any planar graph is a sequentially 3-independent graph. For any fixed constant k, we develop simple, polynomial time approximation algorithms for sequentially k-independent graphs with respect to several well-studied NP-complete problems.


Planar Graph Vertex Cover Intersection Graph Chordal Graph Color Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akcoglu, K., Aspnes, J., DasGupta, B., Kao, M.-Y.: Opportunity Cost Algorithms for Combinatorial Auctions. Applied Optimization 74: Computational Methods in Decision-Making, Economics and Finance, 455-479 (2002)Google Scholar
  2. 2.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the Association for Computing Machinery 41(1), 153–180 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. JACM 48(5), 1069–1090 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating the throughput of multiple machines in real-time scheduling. SIAM Journal on Computing 31(2), 331–352 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bar-Yehuda, R., Bendel, A., Freund, A., Rawitz, D.: Local ratio: A unied framework for approxmation algorithms in memoriam: Shimon Even 1935-2004. Computing Surveys 36, 422–463 (2004)CrossRefGoogle Scholar
  6. 6.
    Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 303–309 (1982)Google Scholar
  7. 7.
    Berman, P.: A \(\frac{d}{2}\) approximation for maximum weight independent set in d-claw free graphs. Nord. J. Comput. 7(3), 178–184 (2000)MathSciNetMATHGoogle Scholar
  8. 8.
    Berman, P., DasGupta, B.: Improvements in throughout maximization for real-time scheduling. In: STOC, pp. 680–687 (2000)Google Scholar
  9. 9.
    Berman, P., DasGupta, B.: A simple approximation algorithm for nonoverlapping local alignments (Weighted Independent Sets of Axis Parallel Rectangles). Biocomputing 1, 129–138 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Borodin, A., Cashman, D., Magen, A.: How well can primal-dual and local-ratio algorithms perform? In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 943–955. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Borodin, A., Nielsen, M., Rackoff, C.: (Incremental) priority algorithms. In: SODA, pp. 752–761 (2002)Google Scholar
  12. 12.
    Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-interval graphs. In: Proceedings of SODA 2007, pp. 268–277 (2007)Google Scholar
  13. 13.
    Chakaravarthy, V.T., Roy, S.: Approximating maximum weight K-colorable subgraphs in chordal graphs. Information Processing Letters (to appear)Google Scholar
  14. 14.
    Chmeiss, A., Jégou, P.: A generalization of chordal graphs and the maximum clique problem. Information Processing Letters 62, 61–66 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job interval selection problem and related scheduling problems. Mathematics of Operations Research 31(4), 730–738 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. Theoretical Computer Science 326(1-3), 57–67 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximun independent set of a chordal graph. SIAM Journal on Computing 1(2), 180–187 (1972)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Griggs, J.R., West, D.B.: Extremal values of the interval number of a graph. SIAM Journal on Algebraic and Discrete Methods 1(1), 1–14 (1980)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hajnal, A., Surányi, J.: Über die Auflösung von Graphen in Voltständige Teilgraphen. Annales Universitatis Sci. Budapestiensis 1, 113–121 (1958)MATHGoogle Scholar
  22. 22.
    Hayward, R.: Weakly triangulated graphs. J. Comb. Theory 39, 200–208 (1985)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hochbaum, D.: Efficient bounds for the stable set, vertex cover, and set packing problems. Discrete Applied Mathematics 6, 243–254 (1983)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal of Computing 7, 413–423 (1978)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Jamison, R.E., Mulder, H.M.: Tolerance intersection graphs on binary trees with constant tolerance 3. Discrete Math. 215, 115–131 (2000)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple Heuristics for Unit Disk Graphs. Networks 25, 59–68 (1995)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. Journal of Combinatorial Theory B-28, 284–304 (1980)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maximum weighted stable set of a claw-free graph. Journal of the Operations Research Society of Japan 44(2), 194–204 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32, 597–609 (1970)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertexelimination on graphs. SIAM J. Cornput. 5, 266–283 (1976)CrossRefMATHGoogle Scholar
  31. 31.
    Spieksma, F.C.R.: On the approximability of an interval scheduling problem. Journal of Scheduling 2, 215–227 (1999)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Tarjan, R.E.: Maximum cardinality search and chordal graphs. Lecture Notes CS 259 (unpublished, 1976)Google Scholar
  33. 33.
    Trotter Jr., W.T., Harary, F.: On double and multiple interval graphs. Journal of Graph Theory 3(3), 205–211 (1979)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    West, D.B.: Parameters of partial orders and graphs: Packing, covering and representation. In: Proceedings of the Conference on Graphs and Order, 1984, Banff, Canada, pp. 267–350. Reidel (1985)Google Scholar
  35. 35.
    West, D.B., Shmoys, D.B.: Recognizing graphs with fixed interval number is NP-complete. Discrete Applied Mathematics 8, 295–305 (1984)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters 24(2), 133–137 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yuli Ye
    • 1
  • Allan Borodin
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoToronto, OntarioCanada

Personalised recommendations