Advertisement

Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems

  • Jesper Nederlof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

Given a graph with n vertices, k terminals and bounded integer weights on the edges, we compute the minimum Steiner Tree in \({\mathcal{O}^*}(2^k)\) time and polynomial space, where the \({\mathcal{O}^*}\) notation omits poly(n,k) factors. Among our results are also polynomial-space \(\mathcal{O}^*(2^n)\) algorithms for several \({\mathcal{NP}}\)-complete spanning tree and partition problems.

The previous fastest known algorithms for these problems use the technique of dynamic programming among subsets, and require exponential space. We introduce the concept of branching walks and extend the Inclusion-Exclusion algorithm of Karp for counting Hamiltonian paths. Moreover, we show that our algorithms can also be obtained by applying Möbius inversion on the recurrences used for the dynamic programming algorithms.

Keywords

Dynamic Programming Span Tree Exact Algorithm Hamiltonian Cycle Dynamic Programming Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bax, E.T.: Recurrence-Based Reductions for Inclusion and Exclusion Algorithms Applied to #P Problems (1996)Google Scholar
  2. 2.
    Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number of perfect matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 548–559. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: STOC, pp. 67–74 (2007)Google Scholar
  4. 4.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the tutte polynomial in vertex-exponential time. In: FOCS, pp. 677–686 (2008)Google Scholar
  5. 5.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed moebius inversion and graphs of bounded degree. In: STACS, pp. 85–96 (2008)Google Scholar
  6. 6.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion. SIAM Journal on Computing, special issue dedicated to selected papers from FOCS 2006, 575–582 (2006)Google Scholar
  7. 7.
    Bodlaender, H.L., Kratsch, D.: An exact algorithm for graph coloring with polynomial memory. Technical Report UU-CS-2006-015, Department of Information and Computing Sciences, Utrecht University (2006)Google Scholar
  8. 8.
    Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. J. Comb. Theory, Ser. B 65(2), 273–290 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dreyfus, S., Wagner, R.: The Steiner problem in graphs. Networks 1, 195–207 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fernau, H., Raible, D., Gaspers, S., Stepanov, A.A.: Exact exponential time algorithms for max internal spanning tree. CoRR, abs/0811.1875 (2008)Google Scholar
  11. 11.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Faster steiner tree computation in polynomial-space. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 430–441. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Fuchs, B., Kern, W., Molle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic programming for minimum Steiner trees. Theory of Computing Systems 41(3), 493–500 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gaspers, S., Saurabh, S., Stepanov, A.A.: A moderately exponential time algorithm for full degree spanning tree. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 479–489. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the jones and tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society 108(01), 35–53 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1, 49–51 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling salesman problem. In: ACM 1977: Proceedings of the 1977 annual conference, pp. 294–300. ACM, New York (1977)Google Scholar
  18. 18.
    Nederlof, J.: Inclusion exclusion for hard problems. Master’s thesis, Utrecht University (August 2008)Google Scholar
  19. 19.
    van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer: Exact algorithms for counting dominating sets. Technical Report UU-CS-2008-043, Utrecht, The Netherlands (2008)Google Scholar
  20. 20.
    Woeginger, G.J.: Space and time complexity of exact algorithms: Some open problems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004, vol. 3162, pp. 281–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jesper Nederlof
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations