Improved Bounds for Flow Shop Scheduling

  • Monaldo Mastrolilli
  • Ola Svensson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

We resolve an open question raised by Feige & Scheideler by showing that the best known approximation algorithm for flow shops is essentially tight with respect to the used lower bound on the optimal makespan. We also obtain a nearly tight hardness result for the general version of flow shops, where jobs are not required to be processed on each machine.

Similar results hold true when the objective is to minimize the sum of completion times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beck, J.: An algorithmic approach to the lovasz local lemma. Random Structures and Algorithms 2(4), 343–365 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chen, B., Potts, C., Woeginger, G.: A review of machine scheduling: Complexity, algorithms and approximability. Handbook of Combinatorial Optimization 3, 21–169 (1998)MathSciNetMATHGoogle Scholar
  3. 3.
    Czumaj, A., Scheideler, C.: A new algorithm approach to the general lovász local lemma with applications to scheduling and satisfiability problems (extended abstract). In: STOC, pp. 38–47 (2000)Google Scholar
  4. 4.
    Feige, U., Scheideler, C.: Improved bounds for acyclic job shop scheduling. Combinatorica 22(3), 361–399 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Goldberg, L., Paterson, M., Srinivasan, A., Sweedyk, E.: Better approximation guarantees for job-shop scheduling. SIAM Journal on Discrete Mathematics 14(1), 67–92 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: A survey. In: Annals of Discrete Mathematics, vol. 5, pp. 287–326. North-Holland, Amsterdam (1979)Google Scholar
  7. 7.
    Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for scheduling problems with minsum criteria. INFORMS Journal on Computing 13(2), 157–168 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Khot, S.: Improved inapproximability results for maxclique, chromatic number and approximate graph coloring. In: FOCS, pp. 600–609 (2001)Google Scholar
  9. 9.
    Lawler, E., Lenstra, J., Kan, A.R., Shmoys, D.: Sequencing and scheduling: Algorithms and complexity. Handbook in Operations Research and Management Science 4, 445–522 (1993)CrossRefGoogle Scholar
  10. 10.
    Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling in O(congestion + dilation) steps. Combinatorica 14(2), 167–186 (1994)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mastrolilli, M., Svensson, O.: (Acyclic) jobshops are hard to approximate. In: FOCS, pp. 583–592 (2008)Google Scholar
  13. 13.
    Nagarajan, V., Sviridenko, M.: Tight bounds for permutation flow shop scheduling. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 154–168. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Potts, C., Shmoys, D., Williamson, D.: Permutation vs. nonpermutation flow shop schedules. Operations Research Letters 10, 281–284 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Queyranne, M., Sviridenko, M.: Approximation algorithms for shop scheduling problems with minsum objective. Journal of Scheduling 5(4), 287–305 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of Scheduling 2(5), 203–213 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shmoys, D., Stein, C., Wein, J.: Improved approximation algorithms for shop scheduling problems. SIAM Journal on Computing 23, 617–632 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Williamson, D., Hall, L., Hoogeveen, J., Hurkens, C., Lenstra, J., Sevastianov, S., Shmoys, D.: Short shop schedules. Operations Research 45, 288–294 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Monaldo Mastrolilli
    • 1
  • Ola Svensson
    • 1
  1. 1.IDSIASwitzerland

Personalised recommendations