Sorting and Selection with Imprecise Comparisons

  • Miklós Ajtai
  • Vitaly Feldman
  • Avinatan Hassidim
  • Jelani Nelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)


In experimental psychology, the method of paired comparisons was proposed as a means for ranking preferences amongst n elements of a human subject. The method requires performing all \(\binom{n}{2}\) comparisons then sorting elements according to the number of wins. The large number of comparisons is performed to counter the potentially faulty decision-making of the human subject, who acts as an imprecise comparator.

We consider a simple model of the imprecise comparisons: there exists some δ> 0 such that when a subject is given two elements to compare, if the values of those elements (as perceived by the subject) differ by at least δ, then the comparison will be made correctly; when the two elements have values that are within δ, the outcome of the comparison is unpredictable. This δ corresponds to the just noticeable difference unit (JND) or difference threshold in the psychophysics literature, but does not require the statistical assumptions used to define this value.

In this model, the standard method of paired comparisons minimizes the errors introduced by the imprecise comparisons at the cost of \(\binom{n}{2}\) comparisons. We show that the same optimal guarantees can be achieved using 4 n3/2 comparisons, and we prove the optimality of our method. We then explore the general tradeoff between the guarantees on the error that can be made and number of comparisons for the problems of sorting, max-finding, and selection. Our results provide close-to-optimal solutions for each of these problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Ailon, N., Constantin, F., Even-Dar, E., Feldman, J., Frahling, G., Henzinger, M.R., Muthukrishnan, S., Nisan, N., Pál, M., Sandler, M., Sidiropoulos, A.: Theory research at Google. SIGACT News 39(2), 10–28 (2008)CrossRefGoogle Scholar
  2. 2.
    Assaf, S., Upfal, E.: Fault tolerant sorting networks. SIAM J. Discrete Math 4(4), 472–480 (1991)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ben-Or, M., Hassidim, A.: The bayesian learner is optimal for noisy binary search (and pretty good for quantum as well). In: FOCS, pp. 221–230 (2008)Google Scholar
  4. 4.
    Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bollobás, B., Thomason, A.: Parallel sorting. Discrete Appl. Math. 6, 1–11 (1983)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Borgstrom, R.S., Kosaraju, S.R.: Comparison-based search in the presence of errors. In: STOC, pp. 130–136 (1993)Google Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  8. 8.
    David, H.A.: The Method of Paired Comparisons, 2nd edn. Charles Griffin & Company Limited (1988)Google Scholar
  9. 9.
    Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy information. SIAM J. Comput. 23(5) (1994)Google Scholar
  10. 10.
    Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal resilient sorting and searching in the presence of memory faults. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 286–298. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Finocchi, I., Italiano, G.F.: Sorting and searching in the presence of memory faults (without redundancy). In: STOC, pp. 101–110 (2004)Google Scholar
  12. 12.
    Gasarch, W.I., Golub, E., Kruskal, C.P.: Constant time parallel sorting: an empirical view. J. Comput. Syst. Sci. 67(1), 63–91 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Häggkvist, R., Hell, P.: Parallel sorting with constant time for comparisons. SIAM J. Comput. 10(3), 465–472 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Häggkvist, R., Hell, P.: Sorting and merging in rounds. SIAM Journal on Algebraic and Discrete Methods 3(4), 465–473 (1982)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Karp, R.M., Kleinberg, R.: Noisy binary search and its applications. In: SODA, pp. 881–890 (2007)Google Scholar
  16. 16.
    Pelc, A.: Searching games with errors—fifty years of coping with liars. Theor. Comput. Sci. 270(1-2), 71–109 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ravikumar, B., Ganesan, K., Lakshmanan, K.B.: On selecting the largest element in spite of erroneous information. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 88–99. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  18. 18.
    Rényi, A.: On a problem in information theory. Magyar Tud. Akad. Mat. Kutató Int. Közl 6, 505–516 (1962)MathSciNetMATHGoogle Scholar
  19. 19.
    Rivest, R.L., Meyer, A.R., Kleitman, D.J., Winklmann, K., Spencer, J.: Coping with errors in binary search procedures. J. Comput. Sys. Sci. 20(3), 396–405 (1980)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Smith, S.M., Albaum, G.S.: Fundamentals of Marketing Research, 1st edn. Sage Publications, Thousand Oaks (2005)Google Scholar
  21. 21.
    Thurstone, L.L.: A law of comparative judgment. Psychological Review 34, 273–286 (1927)CrossRefGoogle Scholar
  22. 22.
    Ulam, S.M.: Adventures of a Mathematician. Scribner’s, New York (1976)Google Scholar
  23. 23.
    Valiant, L.G.: Parallelism in comparison problems. SIAM J. Comput. 4(3), 348–355 (1975)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yao, A.C., Yao, F.F.: On fault-tolerant networks for sorting. SIAM J. Comput. 14(1), 120–128 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Miklós Ajtai
    • 1
  • Vitaly Feldman
    • 1
  • Avinatan Hassidim
    • 2
  • Jelani Nelson
    • 2
  1. 1.IBM Almaden Research CenterSan JoseUSA
  2. 2.MITCambridgeUSA

Personalised recommendations