Popular Mixed Matchings

  • Telikepalli Kavitha
  • Julián Mestre
  • Meghana Nasre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

We study the problem of matching applicants to jobs under one-sided preferences; that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be more popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if φ(M,T) ≥ φ(T,M) for all matchings T, where φ(X,Y) is the number of applicants that prefer X to Y.

Previously studied solution concepts based on the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distributions over matchings in the input graph. The function φ that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if φ(P,Q) ≥ φ(Q,P) for all mixed matchings Q.

We show that popular mixed matchings always exist and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem.

Keywords

Polynomial Time Algorithm Preference List Ellipsoid Algorithm House Allocation Stable Marriage Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulkadiroǧlu, T.S.A.: Ordinal efficiency and dominated sets of assignments. Journal of Economic Theory 112, 157–172 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica 66(3), 689–701 (1998)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal on Computing 37(4), 1030–1045 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. Journal of Economic Theory 100(2), 295–328 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bogomolnaia, A., Moulin, H.: A simple random assignment problem with a unique solution. Economic Theory 75(3), 257–279 (2004)MathSciNetMATHGoogle Scholar
  6. 6.
    Carathéodory, C.: Über den variabilitätsbereich der fourierschen konstanten von positiven harmonischen funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)CrossRefMATHGoogle Scholar
  7. 7.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. jacm 19(2), 248–264 (1972)CrossRefMATHGoogle Scholar
  8. 8.
    Gardenfors, P.: Match making: assignments based on bilateral preferences. Behavioural Sciences 20, 166–173 (1975)CrossRefGoogle Scholar
  9. 9.
    Haung, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded unpopularity matchings. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 127–137. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Katta, A.-K., Sethuraman, J.: A solution to the random assignment problem on the full preference domain. Journal of Economic Theory 131(1), 231–250 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mahdian, M.: Random popular matchings. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 238–242 (2006)Google Scholar
  12. 12.
    Manea, M.: A constructive proof of the ordinal efficiency welfare theorem. Journal of Economic Theory 141, 276–281 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Manea, M.: Asymptotic ordinal inefficiency of random serial dictatorship. Theoretical Economics (to appear, 2009)Google Scholar
  14. 14.
    Manlove, D., Sng, C.: Popular matchings in the capacitated house allocation problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–604. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Neumann, J.V.: Zur theorie der gesellschaftsspiele. Math. Annalen 100, 295–320 (1928)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zhou, L.: On a conjecture by Gale about one-sided matching problems. Journal of Economic Theory 52(1), 123–135 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Telikepalli Kavitha
    • 1
  • Julián Mestre
    • 2
  • Meghana Nasre
    • 1
  1. 1.Indian Institute of ScienceBangaloreIndia
  2. 2.Max-Plank-Institut für InformatikSaarbrückenGermany

Personalised recommendations