Advertisement

Applications of Effective Probability Theory to Martin-Löf Randomness

  • Mathieu Hoyrup
  • Cristóbal Rojas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

We pursue the study of the framework of layerwise computability introduced in a preceding paper and give three applications. (i) We prove a general version of Birkhoff’s ergodic theorem for random points, where the transformation and the observable are supposed to be effectively measurable instead of computable. This result significantly improves V’yugin and Nandakumar’s ones. (ii) We provide a general framework for deriving sharper theorems for random points, sensitive to the speed of convergence. This offers a systematic approach to obtain results in the spirit of Davie’s ones. (iii) Proving an effective version of Prokhorov theorem, we positively answer a question recently raised by Fouché: can random Brownian paths reach any random number? All this shows that layerwise computability is a powerful framework to study Martin-Löf randomness, with a wide range of applications.

Keywords

Random Point Ergodic Theorem Computable Function Iterate Logarithm Correspondence Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Vovk, V.G.: The law of the iterated logarithm for random kolmogorov, or chaotic, sequences. Theory of Probability and Applications 32, 413–425 (1987)CrossRefzbMATHGoogle Scholar
  3. 3.
    V’yugin, V.V.: Effective convergence in probability and an ergodic theorem for individual random sequences. SIAM Theory of Probability and Its Applications 42(1), 39–50 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Nandakumar, S.: An effective ergodic theorem and some applications. In: STOC 2008: Proceedings of the 40th annual ACM symposium on Theory of computing, pp. 39–44. ACM Press, New York (2008)Google Scholar
  5. 5.
    Galatolo, S., Hoyrup, M., Rojas, C.: Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Inf. Comput. (in press, 2007)Google Scholar
  6. 6.
    Davie, G.: The Borel-Cantelli lemmas, probability laws and Kolmogorov complexity. Annals of Probability 29(4), 1426–1434 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hoyrup, M., Rojas, C.: An application of Martin-Löf randomness to effective probability theory. In: Proceedings of CiE 2009. LNCS. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Gács, P.: Uniform test of algorithmic randomness over a general space. Theoretical Computer Science 341, 91–137 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hoyrup, M., Rojas, C.: Computability of probability measures and Martin-Löf randomness over metric spaces. Inf. and Comput. (in press, 2009)Google Scholar
  10. 10.
    Fouché, W.L.: Dynamics of a generic brownian motion: Recursive aspects. Theor. Comput. Sci. 394(3), 175–186 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  12. 12.
    Edalat, A.: When Scott is weak on the top. Mathematical Structures in Computer Science 7(5), 401–417 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schröder, M.: Admissible representations of probability measures. Electronic Notes in Theoretical Computer Science 167, 61–78 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zvonkin, A., Levin, L.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematics Surveys 256, 83–124 (1970)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hertling, P., Weihrauch, K.: Random elements in effective topological spaces with measure. Information and Computation 181(1), 32–56 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Galatolo, S., Hoyrup, M., Rojas, C.: A constructive Borel-Cantelli lemma. Constructing orbits with required statistical properties. Theor. Comput. Sci. (in press, 2007)Google Scholar
  17. 17.
    Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gács, P.: Lecture notes on descriptional complexity and randomness, http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf
  19. 19.
    Fouché, W.L.: Arithmetical representations of brownian motion i. J. Symb. Log. 65(1), 421–442 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kjos-Hanssen, B., Nerode, A.: The law of the iterated logarithm for algorithmically random brownian motion. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 310–317. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mathieu Hoyrup
    • 1
  • Cristóbal Rojas
    • 2
  1. 1.LORIA - 615Vandœuvre-lès-NancyFrance
  2. 2.Institut de Mathématiques de LuminyMarseille Cedex 9France

Personalised recommendations