Applications of a Splitting Trick

  • Martin Dietzfelbinger
  • Michael Rink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)


We study applications of a simple method for circumventing the “full randomness assumption” when building a hashing-based data structure for a set S of keys. The general approach is to “split” S into “pieces” S i , by a splitting hash function. On a piece S i , a method or data structure for generating full randomness is used that uses more space than |S i |. Under certain circumstances, this data structure can be “shared” among the constructions for the pieces S i , which leads to a tighter overall space bound. The method was introduced in the context of cuckoo hashing and its variants, but it seems to have wider applicability. To demonstrate its power and some subtleties, we study three new applications, improving previous constructions: (i) Space-efficient simulation of full randomness on S (following work by Pagh and Pagh (2003/08) and Dietzfelbinger and Woelfel (2003)); (ii) Construction of highly independent functions in the style of Siegel (1989/2004); (iii) One-probe schemes as in work by Buhrman, Miltersen, Radhakrishnan, and Venkatesh (2000/02) and Pagh and Pagh (2002).


Bipartite Graph Hash Function Space Usage Expander Graph Graph Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Siegel, A.: On universal classes of extremely random constant-time hash functions. SIAM J. Comput. 33(3), 505–543 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with worst case constant access time. Theory Comput. Syst. 38(2), 229–248 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly packed constant size bins. Theor. Comput. Sci. 380(1-2), 47–68 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Mitzenmacher, M., Vadhan, S.: Why simple hash functions work: exploiting the entropy in a data stream. In: Proc. 19th SODA, pp. 746–755. SIAM, Philadelphia (2008)Google Scholar
  7. 7.
    Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–326. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Dietzfelbinger, M.: Design strategies for minimal perfect hash functions. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 2–17. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Östlin, A., Pagh, R.: Uniform hashing in constant time and linear space. In: Proc. 35th STOC, pp. 622–628. ACM Press, New York (2003)Google Scholar
  10. 10.
    Dietzfelbinger, M., Woelfel, P.: Almost random graphs with simple hash functions. In: Proc. 35th STOC, pp. 629–638. ACM Press, New York (2003)Google Scholar
  11. 11.
    Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM J. Comput. 38(1), 85–96 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Siegel, A.: On universal classes of fast high performance hash functions, their time-space tradeoff, and their applications. In: Proc. 30th FOCS, pp. 20–25 (1989)Google Scholar
  13. 13.
    Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.: Are bitvectors optimal? SIAM J. Comput. 31(6), 1723–1744 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ta-Shma, A.: Storing information with extractors. Inf. Process. Lett. 83(5), 267–274 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Östlin, A., Pagh, R.: One-probe search. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 439–450. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Dietzfelbinger, M., Meyer auf der Heide, F.: A new universal class of hash functions and dynamic hashing in real time. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 6–19. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  17. 17.
    Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approximate membership (Extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 385–396. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Calkin, N.J.: Dependent sets of constant weight binary vectors. Combinatorics, Probability & Computing 6(3), 263–271 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Dietzfelbinger
    • 1
  • Michael Rink
    • 1
  1. 1.Technische Universität IlmenauIlmenauGermany

Personalised recommendations