On Cartesian Trees and Range Minimum Queries

  • Erik D. Demaine
  • Gad M. Landau
  • Oren Weimann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)


We present new results on Cartesian trees with applications in range minimum queries and bottleneck edge queries. We introduce a cache-oblivious Cartesian tree for solving the range minimum query problem, a Cartesian tree of a tree for the bottleneck edge query problem on trees and undirected graphs, and a proof that no Cartesian tree exists for the two-dimensional version of the range minimum query problem.


Query Time Connectivity Query Memory Transfer Euler Tour Edge Weighted Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Arge, L., Danner, A., Holland-Minkley, B.: Cache-oblivious data structures for orthogonal range searching. In: Proceedings of the 19th annual ACM Symposium on Computational Geometry (SCG), pp. 237–245 (2003)Google Scholar
  2. 2.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Communications of the ACM 31(9), 1116–1127 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product queries. Technical report, TR-71/87, Institute of Computer Science, Tel Aviv University (1987)Google Scholar
  4. 4.
    Alstrup, S., Spork, M.: Optimal on-line decremental connectivity in trees. Information Processing Letters 64(4), 161–164 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An optimal cache-oblivious priority queue and its application to graph algorithms. SIAM Journal on Computing 36(6), 1672–1695 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Atallah, M.J., Yuan, H.: Data structures for range minimum queries in multidimensional arrays (manuscript, 2009)Google Scholar
  8. 8.
    Bender, M.A., Demaine, E.D., Farach-colton, M.: Cache-oblivious B-trees. SIAM Journal on Computing, 399–409 (2000)Google Scholar
  9. 9.
    Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms 57(2), 75–94 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM Journal on Computing 22(2), 221–242 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionaries. In: Proceedings of the 17th annual Symp. On Discrete Algorithms (SODA), pp. 581–590 (2006)Google Scholar
  12. 12.
    Chazelle, B.: A minimum spanning tree algorithm with inverse-ackermann type complexity. Journal of the ACM 47(6), 1028–1047 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays. In: Proceedings of the 5th annual ACM Symposium on Computational Geometry (SCG), pp. 131–139 (1989)Google Scholar
  14. 14.
    Duan, R., Pettie, S.: Fast algorithms for (max,min)-matrix multiplication and bottleneck shortest paths. In: Proceedings of the 20th annual Symposium On Discrete Algorithms, SODA (2009)Google Scholar
  15. 15.
    Even, S., Shiloach, Y.: An on-line edge deletion problem. Journal of the ACM 28, 1–4 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In: Proceedings of the 40th symposium on Foundations Of Computer Science (FOCS), pp. 285–298 (1999)Google Scholar
  18. 18.
    Gabow, H., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proceedings of the 16th annual ACM Symposium on Theory Of Computing (STOC), pp. 135–143 (1984)Google Scholar
  19. 19.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hu, T.C.: The maximum capacity route problem. Operations Research 9(6), 898–900 (1961)CrossRefGoogle Scholar
  21. 21.
    Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm for finding minimum spanning trees. Journal of the ACM 42, 321–329 (1995)CrossRefzbMATHGoogle Scholar
  22. 22.
    Knuth, D.E.: The Art of Computer Programming Volume 4 Fascicle 4: Generating All Trees; History of Combinatorial Generation. Addison-Wesley, Reading (2006)Google Scholar
  23. 23.
    Komlós, J.: Linear verification for spanning trees. Combinatorica 5(1), 57–65 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pettie, S.: An inverse-ackermann style lower bound for the online minimum spanning tree. In: Proceedings of the 43rd symposium on Foundations Of Computer Science (FOCS), pp. 155–163 (2002)Google Scholar
  25. 25.
    Pettie, S., Ramachandran, V.: Minimizing randomness in minimum spanning tree, parallel connectivity and set maxima algorithms. In: Proceedings of the 13th annual Symposium On Discrete Algorithms (SODA), pp. 713–722 (2002)Google Scholar
  26. 26.
    Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. Journal of the ACM 49(1), 16–34 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pollack, M.: The maximum capacity through a network. Operations Research 8(5), 733–736 (1960)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and parallelization. SIAM Journal on Computing 17, 1253–1262 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Seidel, R.: Understanding the inverse ackermann function. PDF presenttion,
  30. 30.
    Shapira, A., Yuster, R., Zwick, U.: All-pairs bottleneck paths in vertex weighted graphs. In: Proceedings of the 18th annual Symposium On Discrete Algorithms (SODA), pp. 978–985 (2007)Google Scholar
  31. 31.
    Vassilevska, V., Williams, R., Yuster, R.: All-pairs bottleneck paths for general graphs in truly sub-cubic time. In: Proceedings of the 39th annual ACM Symposium on Theory Of Computing (STOC), pp. 585–589 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Gad M. Landau
    • 2
    • 3
  • Oren Weimann
    • 1
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.Department of Computer ScienceUniversity of HaifaHaifaIsrael
  3. 3.Department of Computer and Information SciencePolytechnic Institute of NYUUSA

Personalised recommendations