Approximation Algorithms via Structural Results for Apex-Minor-Free Graphs

  • Erik D. Demaine
  • MohammadTaghi Hajiaghayi
  • Ken-ichi Kawarabayashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

We develop new structural results for apex-minor-free graphs and show their power by developing two new approximation algorithms. The first is an additive approximation for coloring within 2 of the optimal chromatic number, which is essentially best possible, and generalizes the seminal result by Thomassen [32] for bounded-genus graphs. This result also improves our understanding from an algorithmic point of view of the venerable Hadwiger conjecture about coloring H-minor-free graphs. The second approximation result is a PTAS for unweighted TSP in apex-minor-free graphs, which generalizes PTASs for TSP in planar graphs and bounded-genus graphs [20,2,24,15].

We strengthen the structural results from the seminal Graph Minor Theory of Robertson and Seymour in the case of apex-minor-free graphs, showing that apices can be made adjacent only to vortices if we generalize the notion of vortices to “quasivortices” of bounded treewidth, proving a conjecture from [10]. We show that this structure theorem is a powerful tool for developing algorithms on apex-minor-free graphs, including for the classic problems of coloring and TSP. In particular, we use this theorem to partition the edges of a graph into k pieces, for any k, such that contracting any piece results in a bounded-treewidth graph, generalizing previous similar results for planar graphs [24] and bounded-genus graphs [15]. We also highlight the difficulties in extending our results to general H-minor-free graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Gavoille, C.: Object location using path separators. In: Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing, pp. 188–197 (2006)Google Scholar
  2. 2.
    Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 33–41 (1998)Google Scholar
  3. 3.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)MATHCrossRefGoogle Scholar
  4. 4.
    Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation schemes for minimum 2-connected spanning subgraphs in weighted planar graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 472–483. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Blum, A., Karger, D.: An Õ(n 3/14)-coloring algorithm for 3-colorable graphs. Information Processing Letters 61, 49–53 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Czumaj, A., Grigni, M., Sissokho, P., Zhao, H.: Approximation schemes for minimum 2-edge-connected and biconnected subgraphs in planar graphs. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 496–505. Society for Industrial and Applied Mathematics, Philadelphia (2004)Google Scholar
  7. 7.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional parameters and local treewidth. SIAM Journal on Discrete Mathematics 18, 501–511 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. Journal of the ACM 52, 866–893 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Demaine, E.D., Hajiaghayi, M.: Diameter and treewidth in minor-closed graph families, revisited. Algorithmica 40, 211–215 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Demaine, E.D., Hajiaghayi, M.: Equivalence of local treewidth and linear local treewidth and its algorithmic applications. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), January 2004, pp. 833–842 (2004)Google Scholar
  11. 11.
    Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connections between FPT algorithms and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Vancouver, January 2005, pp. 590–601 (2005)Google Scholar
  12. 12.
    Demaine, E.D., Hajiaghayi, M.: Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Vancouver, January 2005, pp. 682–689 (2005)Google Scholar
  13. 13.
    Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. The Computer Journal 51, 292–302 (2008)CrossRefGoogle Scholar
  14. 14.
    Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory: Decomposition, approximation, and coloring. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, October 2005, pp. 637–646 (2005)Google Scholar
  15. 15.
    Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via contraction decomposition. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, pp. 278–287 (2007)Google Scholar
  16. 16.
    DeVos, M., Ding, G., Oporowski, B., Sanders, D.P., Reed, B., Seymour, P., Vertigan, D.: Excluding any graph as a minor allows a low tree-width 2-coloring. Journal of Combinatorial Theory, Series B 91, 25–41 (2004)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Computer and System Sciences 57, 187–199 (1998)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Grigni, M.: Approximate TSP in Graphs with Forbidden Minors. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 869–877. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Grigni, M., Koutsoupias, E., Papadimitriou, C.: An approximation scheme for planar graph TSP. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 640–645 (1995)Google Scholar
  21. 21.
    Grohe, M.: Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23, 613–632 (2003)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hadwiger, H.: Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich 88, 133–142 (1943)MathSciNetGoogle Scholar
  23. 23.
    Kawarabayashi, K., Mohar, B.: List-color-critical graphs on a surface (preprint, 2008)Google Scholar
  24. 24.
    Klein, P.N.: A linear-time approximation scheme for TSP for planar weighted graphs. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, pp. 146–155 (2005)Google Scholar
  25. 25.
    Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: Proceedings of the 38th ACM Symposium on Theory of Computing (STOC 2006), pp. 749–756 (2006)Google Scholar
  26. 26.
    Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica 4, 307–316 (1984)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mohar, B., Thomassen, C.: Graphs on surfaces. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)MATHGoogle Scholar
  28. 28.
    Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. Journal of Combinatorial Theory, Series B 89, 43–76 (2003)Google Scholar
  29. 29.
    Thomason, A.: The extremal function for complete minors. Journal of Combinatorial Theory, Series B 81, 318–338 (2001)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Thomassen, C.: Five-coloring maps on surfaces. Journal of Combinatorial Theory. Series B 59, 89–105 (1993)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Thomassen, C.: Every planar graph is 5-choosable. Journal of Combinatorial Theory. Series B 62, 180–181 (1994)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Thomassen, C.: Color-critical graphs on a fixed surface. J. Combin. Theory Ser. B 70, 67–100 (1997)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Thomassen, C.: The chromatic number of a graph of girth 5 on a fixed surface. Journal of Combinatorial Theory. Series B, dedicated to Crispin St. J. A. Nash-Williams 87, 38–71 (2003)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • MohammadTaghi Hajiaghayi
    • 2
  • Ken-ichi Kawarabayashi
    • 3
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.AT&T Labs — ResearchFlorham ParkUSA
  3. 3.National Institute for InformaticsTokyoJapan

Personalised recommendations