A Better Algorithm for Random k-SAT

  • Amin Coja-Oghlan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

Let Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. We present a polynomial time algorithm that finds a satisfying assignment of Φ with high probability for constraint densities \(m/n<(1-\varepsilon_k)2^k{\rm ln}(k)/k\), where εk→0. Previously no efficient algorithm was known to find solutions with non-vanishing probability beyond m/n = 1.817·2k/k [Frieze and Suen, Journal of Algorithms 1996].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Beame, P., Molloy, M.: Exponential bounds for DPLL below the satisfiability threshold. In: Proc. 15th SODA, pp. 139–140 (2004)Google Scholar
  2. 2.
    Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: Proc. 49th FOCS, pp. 793–802 (2008)Google Scholar
  3. 3.
    Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp threshold. SIAM Journal on Computing 36, 740–762 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k ln 2 − O(k). Journal of the AMS 17, 947–973 (2004)MATHGoogle Scholar
  5. 5.
    Ardelius, J., Zdeborova, L.: Exhaustive enumeration unveils clustering and freezing in random 3-SAT. Phys. Rev. E 78, 040101(R) (2008)Google Scholar
  6. 6.
    Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Structures and Algorithms 27, 201–226 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chao, M.-T., Franco, J.: Probabilistic analysis of a generalization of the unit-clause literal selection heuristic for the k-satisfiability problem. Inform. Sci. 51, 289–314 (1990)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proc. 33th FOCS, pp. 620–627 (1992)Google Scholar
  9. 9.
    Coja-Oghlan, A., Feige, U., Frieze, A., Krivelevich, M., Vilenchik, D.: On smoothed k-CNF formulas and the Walksat algorithm. In: Proc. 20th SODA, pp. 451–460 (2009)Google Scholar
  10. 10.
    Flaxman, A.: Algorithms for random 3-SAT. Encyclopedia of Algorithms (2008)Google Scholar
  11. 11.
    Frieze, A., Suen, S.: Analysis of two simple heuristics on a random instance of k-SAT. Journal of Algorithms 20, 312–355 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hajiaghayi, M., Sorkin, G.: The satisfiability threshold of random 3-SAT is at least 3.52. IBM Research Report RC22942 (2003)Google Scholar
  13. 13.
    Kaporis, A., Kirousis, L., Lalas, E.: The probabilistic analysis of a greedy satisfiability algorithm. Random Structures and Algorithms 28, 444–480 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kim, J.H.: Poisson cloning model for random graph (preprint, 2006)Google Scholar
  15. 15.
    Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction problems through Belief Propagation-guided decimation. In: Proc. 45th Allerton (2007)Google Scholar
  16. 16.
    Semerjian, G., Monasson, R.: A study of pure random walk on random satisfiability problems with “Physical” methods. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 120–134. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Amin Coja-Oghlan
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations