A Better Algorithm for Random k-SAT

  • Amin Coja-Oghlan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)


Let Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. We present a polynomial time algorithm that finds a satisfying assignment of Φ with high probability for constraint densities \(m/n<(1-\varepsilon_k)2^k{\rm ln}(k)/k\), where ε k →0. Previously no efficient algorithm was known to find solutions with non-vanishing probability beyond m/n = 1.817·2 k /k [Frieze and Suen, Journal of Algorithms 1996].


Local Search Algorithm Good Algorithm Factor Graph Satisfying Assignment Unit Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achlioptas, D., Beame, P., Molloy, M.: Exponential bounds for DPLL below the satisfiability threshold. In: Proc. 15th SODA, pp. 139–140 (2004)Google Scholar
  2. 2.
    Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: Proc. 49th FOCS, pp. 793–802 (2008)Google Scholar
  3. 3.
    Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp threshold. SIAM Journal on Computing 36, 740–762 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k ln 2 − O(k). Journal of the AMS 17, 947–973 (2004)zbMATHGoogle Scholar
  5. 5.
    Ardelius, J., Zdeborova, L.: Exhaustive enumeration unveils clustering and freezing in random 3-SAT. Phys. Rev. E 78, 040101(R) (2008)Google Scholar
  6. 6.
    Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Structures and Algorithms 27, 201–226 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chao, M.-T., Franco, J.: Probabilistic analysis of a generalization of the unit-clause literal selection heuristic for the k-satisfiability problem. Inform. Sci. 51, 289–314 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proc. 33th FOCS, pp. 620–627 (1992)Google Scholar
  9. 9.
    Coja-Oghlan, A., Feige, U., Frieze, A., Krivelevich, M., Vilenchik, D.: On smoothed k-CNF formulas and the Walksat algorithm. In: Proc. 20th SODA, pp. 451–460 (2009)Google Scholar
  10. 10.
    Flaxman, A.: Algorithms for random 3-SAT. Encyclopedia of Algorithms (2008)Google Scholar
  11. 11.
    Frieze, A., Suen, S.: Analysis of two simple heuristics on a random instance of k-SAT. Journal of Algorithms 20, 312–355 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hajiaghayi, M., Sorkin, G.: The satisfiability threshold of random 3-SAT is at least 3.52. IBM Research Report RC22942 (2003)Google Scholar
  13. 13.
    Kaporis, A., Kirousis, L., Lalas, E.: The probabilistic analysis of a greedy satisfiability algorithm. Random Structures and Algorithms 28, 444–480 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kim, J.H.: Poisson cloning model for random graph (preprint, 2006)Google Scholar
  15. 15.
    Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction problems through Belief Propagation-guided decimation. In: Proc. 45th Allerton (2007)Google Scholar
  16. 16.
    Semerjian, G., Monasson, R.: A study of pure random walk on random satisfiability problems with “Physical” methods. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 120–134. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Amin Coja-Oghlan
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations