A Graph Reduction Step Preserving Element-Connectivity and Applications

  • Chandra Chekuri
  • Nitish Korula
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

Given an undirected graph G = (V,E) and subset of terminals T ⊆ V, the element-connectivity κ G (u,v) of two terminals u,v ∈ T is the maximum number of u-v paths that are pairwise disjoint in both edges and non-terminals V ∖ T (the paths need not be disjoint in terminals). Element-connectivity is more general than edge-connectivity and less general than vertex-connectivity. Hind and Oellermann [18] gave a graph reduction step that preserves the global element-connectivity of the graph. We show that this step also preserves local connectivity, that is, all the pairwise element-connectivities of the terminals.

We give two applications of the step to connectivity and network design problems: First, we show a polylogarithmic approximation for the problem of packing element-disjoint Steiner forests in general graphs, and an O(1)-approximation in planar graphs. Second, we find a very short and intuitive proof of a spider-decomposition theorem of Chuzhoy and Khanna [10] in the context of the single-sink k-vertex-connectivity problem. Our results highlight the effectiveness of the element-connectivity reduction step; we believe it will find more applications in the future.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aazami, A., Cheriyan, J., Jampani, K.R.: Approximation Algorithms and Hardness Results for Packing Element-Disjoint Steiner Trees. Algorithmica (manuscript submitted, 2008)Google Scholar
  2. 2.
    Calinescu, G., Chekuri, C., Vondrak, J.: Disjoint Bases in a Polymatroid. Random Structures & Algorithms (to appear)Google Scholar
  3. 3.
    Chakraborty, T., Chuzhoy, J., Khanna, S.: Network Design for Vertex Connectivity. In: Proc. of ACM STOC, pp. 167–176 (2008)Google Scholar
  4. 4.
    Chekuri, C., Korula, N.: Single-Sink Network Design with Vertex-Connectivity Requirements. In: Proc. of FST&TCS (2008)Google Scholar
  5. 5.
    Chekuri, C., Shepherd, B.: Approximate Integer Decompositions for Undirected Network Design Problems. SIAM J. on Disc. Math. 23(1), 163–177 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cheriyan, J.: Personal Communication (October 2008)Google Scholar
  7. 7.
    Cheriyan, J., Salavatipour, M.: Hardness and Approximation Results for Packing Steiner Trees. Algorithmica 45(1), 21–43 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cheriyan, J., Salavatipour, M.: Packing Element-disjoint Steiner Trees. ACM Trans. on Algorithms 3(4) (2007)Google Scholar
  9. 9.
    Cheriyan, J., Vempala, S., Vetta, A.: Network design via iterative rounding of setpair relaxations. Combinatorica 26(3), 255–275 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chuzhoy, J., Khanna, S.: Algorithms for Single-Source Vertex-Connectivity. In: Proc. of IEEE FOCS, pp. 105–114 (October 2008)Google Scholar
  11. 11.
    Chuzhoy, J., Khanna, S.: An O(k3 logn)-Approximation Algorithm for Vertex-Connectivity Survivable Network Design, arXiv.org preprint. arXiv:0812.4442v1Google Scholar
  12. 12.
    Feige, U., Halldórsson, M., Kortsarz, G., Srinivasan, A.: Approximating the Domatic Number. SIAM J. Comput. 32(1), 172–195 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fleischer, L., Jain, K., Williamson, D.P.: Iterative Rounding 2-approximation Algorithms for Minimum-cost Vertex Connectivity Problems. J. of Computer and System Sciences 72(5), 838–867 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Frank, A.: On Connectivity Properties of Eulerian Digraphs. Annals of Discrete Mathematics 41, 179–194 (1989)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. on Discrete Math. 5(1), 22–53 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Frank, A., Király, T., Kriesell, M.: On decomposing a hypergraph into k connected sub-hypergraphs. Discr. Applied Math. 131(2), 373–383 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Grötschel, M., Martin, A., Weismantel, R.: The Steiner tree packing problem in VLSI-design. Math. Programming 78, 265–281 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hind, H.R., Oellermann, O.: Menger-type results for three or more vertices. Congressus Numerantium 113, 179–204 (1996)MathSciNetMATHGoogle Scholar
  19. 19.
    Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jain, K., Mahdian, M., Salavatipour, M.: Packing Steiner Trees. In: Proc. of ACM-SIAM SODA, pp. 266–274 (2003)Google Scholar
  21. 21.
    Jain, K., Mandoiu, I.I., Vazirani, V.V., Williamson, D.P.: A Primal-Dual Schema Based Approximation Algorithm for the Element Connectivity Problem. In: Proc. of ACM-SIAM SODA, pp. 484–489 (1999)Google Scholar
  22. 22.
    Jackson, B.: Some Remarks on Arc-connectivity, Vertex splitting, and Orientation in Digraphs. Journal of Graph Theory 12(3), 429–436 (1998)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Király, T., Lau, L.C.: Approximate Min-Max Theorems of Steiner Rooted-Orientations of Hypergraphs. J. of Combin. Theory B 98(6), 1233–1252 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of Approximation for Vertex-Connectivity Network Design Problems. SIAM J. Comput. 33(3), 704–720 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kortsarz, G., Nutov, Z.: Approximating min-cost connectivity problems. In: Handbook on Approx. Algorithms and Metaheuristics, CRC Press, Boca Raton (2006)Google Scholar
  26. 26.
    Kriesell, M.: Edge-disjoint trees containing some given vertices in a graph. J. of Combin. Theory B 88, 53–63 (2003)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Lau, L.C.: An approximate max-Steiner-tree-packing min-Steiner-cut theorem. Combinatorica 27(1), 71–90 (2007)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Lau, L.C.: Packing steiner forests. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 362–376. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Hung. 28, 129–138 (1976)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Mader, W.: A reduction method for edge connectivity in graphs. Ann. Discrete Math. 3, 145–164 (1978)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Nutov, Z.: An almost O(logk)-approximation for k-connected subgraphs. In: Proc. of ACM-SIAM SODA, pp. 912–921 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chandra Chekuri
    • 1
  • Nitish Korula
    • 1
  1. 1.Dept. of Computer ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations