The Tile Complexity of Linear Assemblies

  • Harish Chandran
  • Nikhil Gopalkrishnan
  • John Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)


The conventional Tile Assembly Model (TAM) developed by Winfree using Wang tiles is a powerful, Turing-universal theoretical framework which models varied self-assembly processes. We describe a natural extension to TAM called the Probabilistic Tile Assembly Model (PTAM) to model the inherent probabilistic behavior in physically realized self-assembled systems. A particular challenge in DNA nanoscience is to form linear assemblies or rulers of a specified length using the smallest possible tile set. These rulers can then be used as components for construction of other complex structures. In TAM, a deterministic linear assembly of length N requires a tile set of cardinality at least N. In contrast, for any given N, we demonstrate linear assemblies of expected length N with a tile set of cardinality Θ(logN) and prove a matching lower bound of Ω(logN). We also propose a simple extension to PTAM called κ-pad systems in which we associate κ pads with each side of a tile, allowing abutting tiles to bind when at least one pair of corresponding pads match and prove analogous results. All our probabilistic constructions are free from co-operative tile binding errors and can be modified to produce assemblies whose probability distribution of lengths has arbitrarily small tail bounds dropping exponentially with a given multiplicative factor increase in number of tile types. Thus, for linear assembly systems, we have shown that randomization can be exploited to get large improvements in tile complexity at a small expense of precision in length.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rothemund, P.: Folding DNA to Create Nanoscale Shapes and Patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  2. 2.
    Yan, H., Yin, P., Park, S.H., Li, H., Feng, L., Guan, X., Liu, D., Reif, J., LaBean, T.: Self-assembled DNA Structures for Nanoconstruction. American Institute of Physics Conference Series, vol. 725, pp. 43–52 (2004)Google Scholar
  3. 3.
    Zhang, D.Y., Turberfield, A., Yurke, B., Winfree, E.: Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)CrossRefGoogle Scholar
  4. 4.
    Wang, H.: Proving Theorems by Pattern Recognition II (1961)Google Scholar
  5. 5.
    Berger, R.: The Undecidability of the Domino Problem, vol. 66, pp. 1–72 (1966)Google Scholar
  6. 6.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1993)MATHGoogle Scholar
  7. 7.
    Robinson, R.: Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones Mathematicae 12, 177–209 (1971)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1981)MATHGoogle Scholar
  9. 9.
    Lewis, H., Papadimitriou, C.: Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs (1981)MATHGoogle Scholar
  10. 10.
    Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and Self-Assembly of Two-Dimensional DNA Crystals. Nature 394, 539–544 (1999)CrossRefGoogle Scholar
  11. 11.
    Adleman, L.: Towards a mathematical theory of self-assembly. Technical report, University of Southern California (2000)Google Scholar
  12. 12.
    Winfree, E.: DNA Computing by Self-Assembly. In: NAE’s The Bridge, vol. 33, pp. 31–38 (2003)Google Scholar
  13. 13.
    Rothemund, P., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: STOC, pp. 459–468 (2000)Google Scholar
  14. 14.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running Time and Program Size for Self-Assembled Squares. In: STOC, pp. 740–748 (2001)Google Scholar
  15. 15.
    Barish, R., Rothemund, P., Winfree, E.: Two Computational Primitives for Algorithmic Self-Assembly: Copying and Counting. Nano Letters 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  16. 16.
    Yan, H., Feng, L., LaBean, T., Reif, J.: Parallel Molecular Computation of Pair-Wise XOR using DNA String Tile. Journal of the American Chemical Society (125) (2003)Google Scholar
  17. 17.
    Winfree, E.: Simulations of Computing by Self-Assembly. Technical report, Caltech CS Tech Report (1998)Google Scholar
  18. 18.
    Schulman, R., Lee, S., Papadakis, N., Winfree, E.: One Dimensional Boundaries for DNA Tile Self-Assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 108–126. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Park, S.H., Yin, P., Liu, Y., Reif, J., LaBean, T., Yan, H.: Programmable DNA Self-assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters 5, 729–733 (2005)CrossRefGoogle Scholar
  20. 20.
    Aggarwal, G., Goldwasser, M., Kao, M.Y., Schweller, R.: Complexities for Generalized Models of Self-Assembly. In: SODA, pp. 880–889 (2004)Google Scholar
  21. 21.
    Kao, M.Y., Schweller, R.: Randomized Self-Assembly for Approximate Shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Lagoudakis, M., LaBean, T.: 2D DNA Self-Assembly for Satisfiability. In: DIMACS Workshop on DNA Based Computers (1999)Google Scholar
  23. 23.
    Becker, F., Rapaport, I., Rémila, É.: Self-assemblying classes of shapes with a minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Reif, J.: Local parallel biomolecular computation. In: NA-Based Computers, III, pp. 217–254. American Mathematical Society, Providence, RI (1997)Google Scholar
  25. 25.
    Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged Self-assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 1–14. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J., Seeman, N.: Construction, Analysis, Ligation, and Self-Assembly of DNA Triple Crossover Complexes. Journal of the American Chemical Society 122(9), 1848–1860 (2000)CrossRefGoogle Scholar
  27. 27.
    Mao, C., LaBean, T., Reif, J., Seeman, N.: Logical Computation Using Algorithmic Self-Assembly of DNA Triple-Crossover Molecules. Nature 407, 493–496 (2000)CrossRefGoogle Scholar
  28. 28.
    Gillespie, D.: Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  29. 29.
    Soloveichik, D., Winfree, E.: Complexity of Self-Assembled Shapes. SIAM Journal of Computing 36(6), 1544–1569 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Winfree, E., Bekbolatov, R.: Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Gordan, H.: Discrete Probability. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  33. 33.
    Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Harish Chandran
    • 1
  • Nikhil Gopalkrishnan
    • 1
  • John Reif
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations