Annotations in Data Streams

  • Amit Chakrabarti
  • Graham Cormode
  • Andrew McGregor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

The central goal of data stream algorithms is to process massive streams of data using sublinear storage space. Motivated by work in the database community on outsourcing database and data stream processing, we ask whether the space usage of such algorithms be further reduced by enlisting a more powerful “helper” who can annotate the stream as it is read. We do not wish to blindly trust the helper, so we require that the algorithm be convinced of having computed a correct answer. We show upper bounds that achieve a non-trivial tradeoff between the amount of annotation used and the space required to verify it. We also prove lower bounds on such tradeoffs, often nearly matching the upper bounds, via notions related to Merlin-Arthur communication complexity. Our results cover the classic data stream problems of selection, frequency moments, and fundamental graph problems such as triangle-freeness and connectivity. Our work is also part of a growing trend — including recent studies of multi-pass streaming, read/write streams and randomly ordered streams — of asking more complexity-theoretic questions about data stream processing. It is a recognition that, in addition to practical relevance, the data stream model raises many interesting theoretical questions in its own right.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory. In: ACM STOC (2008)Google Scholar
  2. 2.
    Ablayev, F.: Lower bounds for one-way probabilistic communication complexity and their application to space complexity. Theoretical Computer Science 175(2), 139–159 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model augmented with a sorting primitive. In: IEEE FOCS (2004)Google Scholar
  4. 4.
    Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. Journal of Computer and System Sciences 58(1), 137–147 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory (preliminary version). In: IEEE FOCS (1986)Google Scholar
  6. 6.
    Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: ACM-SIAM SODA (2002)Google Scholar
  7. 7.
    Beame, P., Huynh-Ngoc, D.-T.: On the value of multiple read/write streams for approximating frequency moments. In: IEEE FOCS (2008)Google Scholar
  8. 8.
    Beame, P., Jayram, T.S., Rudra, A.: Lower bounds for randomized read/write stream algorithms. In: ACM STOC (2007)Google Scholar
  9. 9.
    Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting triangles in data streams. In: ACM PODS (2006)Google Scholar
  10. 10.
    Chakrabarti, A., Cormode, G., McGregor, A.: Robust lower bounds for communication and stream computation. In: ACM STOC (2008)Google Scholar
  11. 11.
    Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In: IEEE CCC (2003)Google Scholar
  12. 12.
    Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. Theor. Comput. Sci. 312(1), 3–15 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Demetrescu, C., Escoffier, B., Moruz, G., Ribichini, A.: Adapting parallel algorithms to the W-stream model, with applications to graph problems. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 194–205. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems. In: ACM-SIAM SODA (2006)Google Scholar
  16. 16.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theoretical Computer Science 348(2-3), 207–216 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Feigenbaum, J., Kannan, S., Zhang, J.: Annotation and computational geometry in the streaming model. Technical Report YALEU/DCS/TR-1249, Yale University (2003)Google Scholar
  18. 18.
    Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, Springer, Heidelberg (1979)CrossRefGoogle Scholar
  19. 19.
    Gertner, Y., Kannan, S., Viswanathan, M.: NP and streaming verifiers (manuscript, 2002)Google Scholar
  20. 20.
    Grohe, M., Hernich, A., Schweikardt, N.: Randomized computations on large data sets: tight lower bounds. In: ACM PODS (2006)Google Scholar
  21. 21.
    Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: External memory algorithms (1999)Google Scholar
  22. 22.
    Johnson, W., Lindenstrauss, J.: Extensions of Lipshitz mapping into Hilbert space. Contemporary Mathematics 26, 189–206 (1984)CrossRefMATHGoogle Scholar
  23. 23.
    Jowhari, H., Ghodsi, M.: New streaming algorithms for counting triangles in graphs. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 710–716. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Kimbrel, T., Sinha, R.K.: A probabilistic algorithm for verifying matrix products using o(n 2) time and log2 n + o(1) random bits. Inf. Process. Lett. 45(2), 107–110 (1993)CrossRefMATHGoogle Scholar
  25. 25.
    Klauck, H.: Rectangle size bounds and threshold covers in communication complexity. In: IEEE CCC (2003)Google Scholar
  26. 26.
    Kushilevitz, E., Nisan, N.: Communication Complexity. CUP (1997)Google Scholar
  27. 27.
    Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: Enabling authentication of sliding window queries on streams. In: VLDB (2007)Google Scholar
  28. 28.
    Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Papadopoulos, S., Yang, Y., Papadias, D.: Cads: Continuous authentication on data streams. In: VLDB (2007)Google Scholar
  30. 30.
    Razborov, A.: On the distributional complexity of disjontness. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, Springer, Heidelberg (1990)Google Scholar
  31. 31.
    Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Thorup, M., Zhang, Y.: Tabulation based 4-universal hashing with applications to second moment estimation. In: ACM-SIAM SODA (2004)Google Scholar
  33. 33.
    Tucker, P.A., Maier, D., Delcambre, L.M.L., Sheard, T., Widom, J., Jones, M.P.: Punctuated data streams (2005)Google Scholar
  34. 34.
    Yi, K., Li, F., Hadjieleftheriou, M., Kollios, G., Srivastava, D.: Randomized synopses for query assurance on data streams. In: IEEE ICDE (2008)Google Scholar
  35. 35.
    Zelke, M.: Weighted matching in the semi-streaming model. In: STACS, pp. 669–680 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Amit Chakrabarti
    • 1
  • Graham Cormode
    • 2
  • Andrew McGregor
    • 3
  1. 1.Dartmouth CollegeUSA
  2. 2.AT&T Labs–ResearchUSA
  3. 3.University of Massachusetts, AmherstUSA

Personalised recommendations