Algorithmic Game Theory: A Snapshot

  • Christos H. Papadimitriou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

Algorithmic game theory is the research area in the interface between the theories of algorithms, networks, and games, which emerged more than a decade ago motivated by the advent of the Internet. “Snapshot” means several things: very personal point of view, of topical and possibly ephemeral interest, and put together in a hurry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, I., Daskalakis, C., Papadimitriou, C.H.: Manuscript (2009)Google Scholar
  2. 2.
    Arrow, K.J., Debreu, G.: Existence of equilibria for a competitive economy. Econometrica 22(3), 265–290 (1954)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blum, A., Hajiaghayi, M., Ligett, K., Roth, A.: Regret minimization and the price of total anarchy. In: STOC (2008)Google Scholar
  4. 4.
    Borgs, C., Chayes, J.T., Immorlica, N., Kalai, A.T., Mirrokni, V.S., Papadimitriou, C.H.: The myth of the folk theorem. In: STOC 2008, pp. 365–372 (2008)Google Scholar
  5. 5.
    Brown, G.W., von Neumann, J.: Solutions of games by differential equations. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Princeton University Press, Princeton (1950)Google Scholar
  6. 6.
    Buchfuhrer, D., Umans, C.: Limits on the social welfare of maximal-in-range auction mechanisms (manuscript, 2009)Google Scholar
  7. 7.
    Chen, X., Dai, D., Du, Y., Teng, S.: Settling the complexity of Arrow-Debreu equilibria in markets with linearly separable utilities (manuscript, 2009)Google Scholar
  8. 8.
    Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: FOCS (2006)Google Scholar
  9. 9.
    Codenotti, B., Saberi, A., Varadarajan, K., Ye, Y.: Leontief economies encode nonzero sum two-player games. In: Proceedings of the seventeenth annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2006)Google Scholar
  10. 10.
    Cole, R., Fleischer, L.: Fast-converging tatonnement algorithms for one-time and ongoing market problems. In: Proceedings of the 40th annual ACM Symposium on Theory of Computing, STOC (2008)Google Scholar
  11. 11.
    Daskalakis, C.: The complexity of approximating a Nash equilibrium (submitted, 2009)Google Scholar
  12. 12.
    Daskalakis, C., Frongillo, R., Pierrakos, G., Papadimitriou, C.H., Valiant, G.: In preparation (2009)Google Scholar
  13. 13.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: STOC 2006 (2006); SIAM Journal on Computing, special issue for 2006 STOC (to appear)Google Scholar
  14. 14.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. CACM 58(2), 89–97 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Daskalakis, C., Papadimitriou, C.H.: On oblivious PTAS’s for Nash equilibrium. In: STOC (2009)Google Scholar
  16. 16.
    Daskalakis, C., Papadimitriou, C.H.: On a network generalization of the minmax theorem. In: Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Fabrikant, A., Papadimitriou, C.H.: The complexity of game dynamics: BGP oscillations, sink equilibria, and beyond. In: SODA 2008, pp. 844–853 (2008)Google Scholar
  18. 18.
    Friedmand, E.J., Shenker, S.J.: Learning and implementation on the Internet, Working paper (1997)Google Scholar
  19. 19.
    Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights. Games and Economic Behavior 29, 79–103 (1999)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gale, D., Kuhn, H.W., Tucker, A.W.: On symmetric games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Princeton University Press, Princeton (1950)Google Scholar
  21. 21.
    Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink Equilibria and Convergence. In: FOCS 2005, pp. 142–154 (2005)Google Scholar
  22. 22.
    Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT Press Classis, Cambridge (1982)MATHGoogle Scholar
  23. 23.
    Hart, S., Mansour, Y.: The communication complexity of uncoupled Nash equilibrium procedures. In: STOC 2007 (2007)Google Scholar
  24. 24.
    Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150 (2000)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games. In: SODA (2007)Google Scholar
  26. 26.
    Karlin, A.R., Kempe, D., Tamir, T.: Frugality of truthful mechanisms. In: FOCS (2005)Google Scholar
  27. 27.
    Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical Models for Game Theory. In: UAI (2001)Google Scholar
  28. 28.
    Kleinberg, R., Piliouras, G., Tardos, É.: Multiplicative updates outperform generic no-regret learning in congestion games. In: STOC (2009)Google Scholar
  29. 29.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: SIGKDD (2003)Google Scholar
  30. 30.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  31. 31.
    Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: ACM EC (2003)Google Scholar
  32. 32.
    Montanari, A., Saberi, A.: Convergence to Equilibrium in Local Interaction Games (2008)Google Scholar
  33. 33.
    Mossel, E., Papadimitriou, C.H., Schapira, M., Singer, Y.: Combinatorial Auctions: VC v. VCG (submitted, 2009)Google Scholar
  34. 34.
    Nash, J.: Noncooperative Games. Annals of Mathematics 54, 289–295 (1951)CrossRefGoogle Scholar
  35. 35.
    Nisan, N., Ronen, A.: Algorithmic Mechanism Design. In: STOC (1999)Google Scholar
  36. 36.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)CrossRefMATHGoogle Scholar
  37. 37.
    Papadimitriou, C.H.: Computing correlated equilibria in multiplayer games. In: STOC (2005)Google Scholar
  38. 38.
    Papadimitriou, C.H., Roughgarden, T.: Computing equilibria in multi-player games. In: SODA 2005 (2005); J.ACM (full version, 2008)Google Scholar
  39. 39.
    Papadimitriou, C.H., Schapira, M., Singer, Y.: On the hardness of being truthful. In: FOCS (2008)Google Scholar
  40. 40.
    Papadimitriou, C.H., Valiant, G.: Selfish routers and the price of anarchy (submitted, 2009)Google Scholar
  41. 41.
    Papadimitriou, C.H., Yannakakis, M.: On complexity as bounded rationality (extended abstract). In: STOC 1994, pp. 726–733 (1994)Google Scholar
  42. 42.
    Papadimitriou, C.H., Yannakakis, M.: An impossibility theorem for price adjustment mechanisms (manuscript, 2009)Google Scholar
  43. 43.
    Robinson, J.: An iterative method of solving a game. Annals of Mathematics (1951)Google Scholar
  44. 44.
    Royal Swedish Academy of Sciences Mechanism Design Theory (2007), http://nobelprize.org/nobelprizes/economics/laureates/2007/ecoadv07.pdf
  45. 45.
    Roughgarden, T.: Selfish Routing. MIT Press, Cambridge (2002)MATHGoogle Scholar
  46. 46.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? JACM (2002)Google Scholar
  47. 47.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: STOC (2009)Google Scholar
  48. 48.
    von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Annalen 100, 295–320 (1928)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christos H. Papadimitriou
    • 1
  1. 1.Division of Computer Science, U.C. BerkeleyUSA

Personalised recommendations