Unconditional Lower Bounds against Advice

  • Harry Buhrman
  • Lance Fortnow
  • Rahul Santhanam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5555)

Abstract

We show several unconditional lower bounds for exponential time classes against polynomial time classes with advice, including:
  1. 1

    For any constant c, \({\sf NEXP} \not \subseteq {\rm{\sf P}}^{\sf NP[n^c]}/n^c\)

     
  2. 1

    For any constant c, \({\sf MAEXP} \not \subseteq {\rm {\sf MA}}/n^c\)

     
  3. 1

    \({\sf BPEXP} \not \subseteq {\sf BPP}/n^{o(1)}\)

     

It was previously unknown even whether NEXP ⊆ NP/n0.01. For the probabilistic classes, no lower bounds for uniform exponential time against advice were known before.

We also consider the question of whether these lower bounds can be made to work on almost all input lengths rather than on infinitely many. We give an oracle relative to which NEXP ⊆ ioNP, which provides evidence that this is not possible with current techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AG94]
    Allender, E., Gore, V.: A uniform circuit lower bound for the permanent. SIAM Journal on Computing 23(5), 1026–1049 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. [AW08]
    Aaronson, S., Wigderson, A.: Algebrization: A New Barrier in Complexity Theory. ACM Trans. Comput. Theory 1(1), 1–54 (2009), http://doi.acm.org/10.1145/1490270.1490272 CrossRefMATHGoogle Scholar
  3. [BFFT01]
    Buhrman, H., Fenner, S., Fortnow, L., Torenvliet, L.: Two oracles that force a big crunch. Computational Complexity 10(2), 93–116 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. [BFL91]
    Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1, 3–40 (1991)MathSciNetCrossRefMATHGoogle Scholar
  5. [BGS75]
    Baker, T., Gill, J., Solovay, R.: Relativizations of the P =? NP question. SIAM Journal on Computing 4(4), 431–442 (1975)MathSciNetCrossRefMATHGoogle Scholar
  6. [Coo72]
    Cook, S.: A hierarchy for nondeterministic time complexity. In: Conference Record, Fourth Annual ACM Symposium on Theory of Computing, Denver, Colorado, May 1-3, 1972, pp. 187–192 (1972)Google Scholar
  7. [FLvMV05]
    Fortnow, L., Lipton, R., van Melkebeek, D., Viglas, A.: Time-space lower bounds for satisfiability. Journal of the ACM 52(6), 833–865 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. [FS04]
    Fortnow, L., Santhanam, R.: Hierarchy theorems for probabilistic polynomial time. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pp. 316–324 (2004)Google Scholar
  9. [FST04]
    Fortnow, L., Santhanam, R., Trevisan, L.: Promise hierarchies. Electronic Colloquium on Computational Complexity (ECCC) 11(98) (2004)Google Scholar
  10. [FST05]
    Fortnow, L., Santhanam, R., Trevisan, L.: Hierarchies for semantic classes. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing (2005)Google Scholar
  11. [HM95]
    Homer, S., Mocas, S.: Nonuniform lower bounds for exponential time classes. In: 20th International Symposium on Mathematical Foundations of Computer Science, pp. 159–168 (1995)Google Scholar
  12. [IKW02]
    Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences 65(4), 672–694 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. [KI03]
    Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. In: Proceedings of the 35th Annual ACM Symposium on the Theory of Computing, pp. 355–364 (2003)Google Scholar
  14. [KV87]
    Karpinski, M., Verbeek, R.: On the monte carlo space constructible functions and separation results for probabilistic complexity classes. Information and Computation 75 (1987)Google Scholar
  15. [KvM99]
    Klivans, A.R., van Melkebeek, D.: Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Comput. 31(5), 1501–1526 (2002), http://dx.doi.org/10.1137/S0097539700389652 MathSciNetCrossRefMATHGoogle Scholar
  16. [Moc96]
    Mocas, S.E.: Separating classes in the exponential-time hierarchy from classes in PH. Theoretical Computer Science 158(1-2), 221–231 (1996)MathSciNetCrossRefMATHGoogle Scholar
  17. [NW94]
    Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and System Sciences 49(2), 149–167 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. [RR97]
    Razborov, A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55(1), 24–35 (1997)MathSciNetCrossRefMATHGoogle Scholar
  19. [RS81]
    Rackoff, C., Seiferas, J.: Limitations on separating nondeterministic complexity classes. SIAM Journal on Computing 10(4), 742–745 (1981)MathSciNetCrossRefMATHGoogle Scholar
  20. [SFM78]
    Seiferas, J., Fischer, M., Meyer, A.: Separating nondeterministic time complexity classes. Journal of the ACM 25(1), 146–167 (1978)MathSciNetCrossRefMATHGoogle Scholar
  21. [TV02]
    Trevisan, L., Vadhan, S.: Pseudorandomness and average-case complexity via uniform reductions. In: Proceedings of the 17th Annual IEEE Conference on Computational Complexity, vol. 17 (2002)Google Scholar
  22. [vMP06]
    van Melkebeek, D., Pervyshev, K.: A generic time hierarchy for semantic models with one bit of advice. In: Proceedings of 21st Annual IEEE Conference on Computational Complexity, pp. 129–144 (2006)Google Scholar
  23. [Ž8́3]
    Žák, S.: A Turing machine time hierarchy. Theoretical Computer Science 26(3), 327–333 (1983)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Harry Buhrman
    • 1
  • Lance Fortnow
    • 2
  • Rahul Santhanam
    • 3
  1. 1.CWI, AmsterdamNetherlands
  2. 2.Northwestern UniversityUSA
  3. 3.University of EdinburghUK

Personalised recommendations